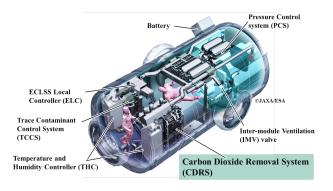

- Dylan Shun Izuma
- Japan Aerospace Exploration Agency (JAXA)
- □ ECLSS R&D team
- Plant cultivation system
- •CO₂ removal system
- Temperature and humidity control system



- Introduction
- Challenges in µG
- Concept of the developing device
- Current states
- Summary

A Plant missions in the past

Space Seed

Life Cycle of Higher Plants under Microgravity Conditions

Arabidopsis thaliana

HydroTropi

Hydrotropism and Auxin-Inducible Gene Expression in Roots Grown under Microgravity Conditions

Cucumber

Space Moss

Environmental response and utilization of mosses in space Space Moss
Physcomitella

Ferulate

Regulation by Gravity of Ferulate Formation in Cell Walls of Rice Seedlings Rice

Resist Tubule

Mechanisms of Gravity Resistance in Plants: From Signal Transformation and Transduction to Response *Arabidopsis thaliana*

Plant Gravity Sensing

Molecular mechanisms of differentiation and formation of the gravity sensing system in plant cells

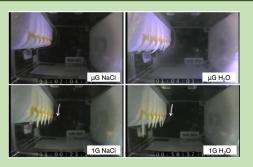
Arabidopsis thaliana

Plant Rotation

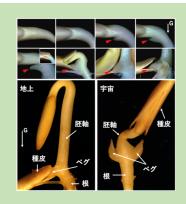
Plant circumnutation and its dependence on the gravity response

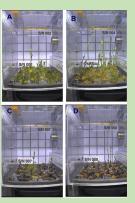
Rice

Auxin Transport


Studies on gravity-controlled growth and development in higher plants using true microgravity.

Pisum satiyum/Rice


Numerous plant experiments have been conducted in orbit.


What we discovered

✓ Hydrotropic responses in µG^{*})

✓ Morphogenesis in µG**)

✓ Seed-to-seed life cycle***)

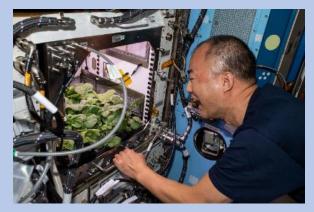
▼ Fundamental Plant Biology

Issues we had

- ✓ Small cultivation volume
- ✓ Short term experiment
- ✓ Limited species

Plant
Experiment
Unit
(PEU)

On the other hand


Other nations have been developing advanced plant experiment unit

Ongoing plant cultivation projects

Examples

MELISSA (ESA)*)

Advanced plant habit (NASA) **)

Veggie(NASA) ***)

*) https://www.melissafoundation.org/page/melissa-pilot-plant
**) https://images.nasa.gov/details-iss064e006454

***) G. D. Massa, et al., Open Agriculture 2017.

Why ???

Food production

Mental support

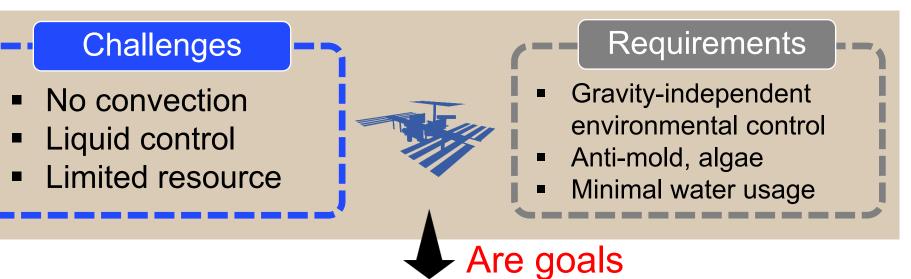
Advanced life support system

We recognize

Plant production as a key technology for human space travel

→ Start developing next-generation plant growth chamber

- Introduction
- Challenges in µG
- Concept of the developing device
- Current states
- Summary

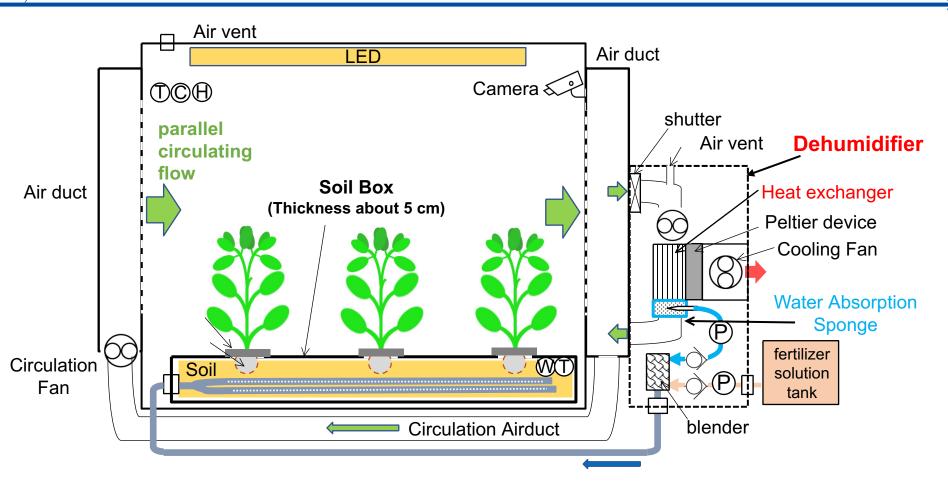


Challenges unique to the microgravity environment 8

	Grund	μG Unique Challenges	Difficulty
Temperature and Humidity	Ventilation with outside air	Control temperature and humidity within a narrow chamber, despite heat from equipment and transpired water from plants, by using dehumidification and ventilation.	Medium
Control	Air conditioning system	Active air circulation system to homogenize the internal atmosphere in the absence of natural convection	Low
Transpiration Water Recovery	No water recovery	Dehumidification and water recovery, with the reclaimed water returned to the growth medium in accordance with variable transpiration rates.	High
Nutrient solution	Circulation of large volumes of nutrient solution, with complete	Implementation of a system that integrates nutrient solution, recovered water, and air into the growth medium.	High
supply	replacement once the solution becomes degraded.	Maintenance of nutrient balance through species-specific formulations of nutrient solutions, optimized for plant-specific absorption characteristics.	High+
Growth medium materials and	High flexibility in the selection of construction materials.	Selection of growth media suitable for application in µG environments. Safety control, Water control, etc.	Medium
encapsulation methods	Installation and operation are facilitated by the use of gravity.	Encapsulation of the medium using flame-retardant materials to ensure both fire prevention of particle dispersion under microgravity conditions.	Medium
Nutrient solution diffusion into the	Application of gravity-driven watering and diffusion processes.	Development of techniques to uniformly distribute and retain nutrient solution throughout the entire medium.	Medium
medium and evaporation reduction	Simple evaporation-prevention measures such as covering the water surface.	Reduction of the medium's exposure to air to minimize water loss through evaporation and inhibit moss proliferation.	Medium
Seedling	Germination in a dedicated nursery facility, followed by	Provision of compact growth media, watering devices, and environmental controls for temperature and humidity during germination.	Medium
cultivation and transplantation	selection of healthy seedlings and transplantation to the cultivation site.	Establishment of procedures for transplanting seedlings after germination and reestablishing them at designated cultivation sites within the apparatus.	Medium

Challenges and requirements in µG

Develop a device with


Large-volume, long-term cultivation, water recycle

■ Working on Water supply, soil, environmental control

(Today's talk)
Development Status and
Test Results of JAXA's Plant Growth Unit

- Introduction
- Challenges in µG
- Concept of the developing device
- Current states
- Summary

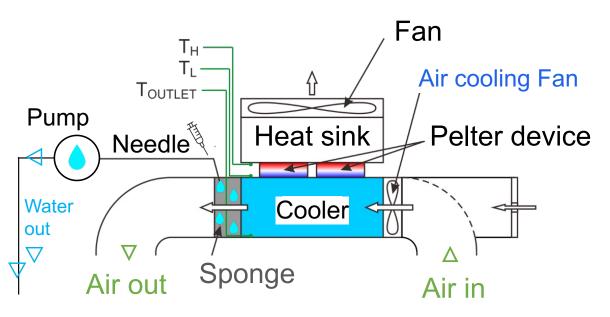
Key points of the device

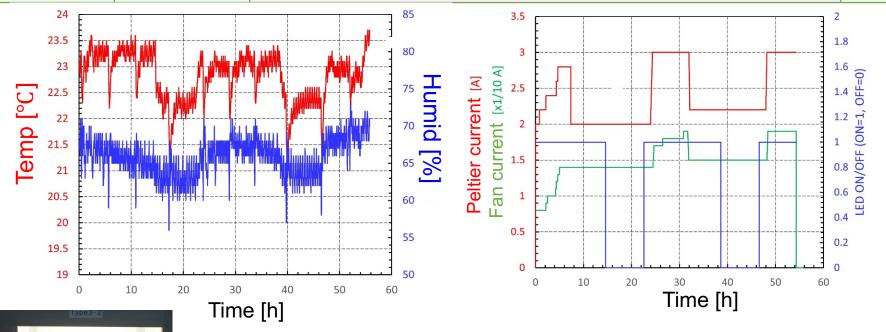
- Temperature and Humidity Control: using the dehumidifier.
- Ventilation/Circulation: Parallel circulation flow by an air duct.
- Recycling Water and Water Supply: Dehumidified water is returned to the Soil Box.

- Introduction
- Challenges in µG
- Concept of the developing device
- Current states
- Summary

A Prototype dehumidifier

	Grund	μG Unique Challenges	Difficulty
Temperature and Humidity	Ventilation with outside air	Temperature and humidity control within a small chamber, despite heat from equipment and transpired water from plants, by using dehumidification and ventilation.	Medium
Control	Air conditioning system	Active air circulation system to homogenize the internal atmosphere in the absence of natural convection	Low
Transpiration Water Recovery No water recovery		Dehumidification and water recovery, with the reclaimed water returned to the growth medium in accordance with variable transpiration rates.	High




Fig. Aluminum alloy (AlSi10Mg) slit, formed using a 3D printer.

- Transpired water was collected by cooling the Aluminum alloy (AlSi10Mg) slit.
- Water recovery Mechanism that can be used in microgravity.

Prototype dehumidifier

	Grund	μG Unique Challenges	Difficulty
Temperature and Humidity	Ventilation with outside air	Temperature and humidity control within a small chamber, despite heat from equipment and transpired water from plants, by using dehumidification and ventilation.	Medium
Control	Air conditioning system	Active air circulation system to homogenize the internal atmosphere in the absence of natural convection	Low
Transpiration Water Recovery		Dehumidification and water recovery, with the reclaimed water returned to the growth medium in accordance with variable transpiration rates.	High

Temperature and humidity controlled by regulating the Peltier current,

Maintaining humidity near the lower limit of the optimal range on the vapor pressure deficit chart (22.5 °C, 65%; 23.0 °C, 66%).

Parallel circulating flow

	Grund	μG Unique Challenges	Difficulty
Temperature and Humidity	Ventilation with outside air	Temperature and humidity control within a small chamber , despite heat from equipment and transpired water from plants, by using dehumidification and ventilation.	Medium
Control	Air conditioning system	Active air circulation system to homogenize the internal atmosphere in the absence of natural convection	Low

Prototype equipped with a flow-straightening plate.

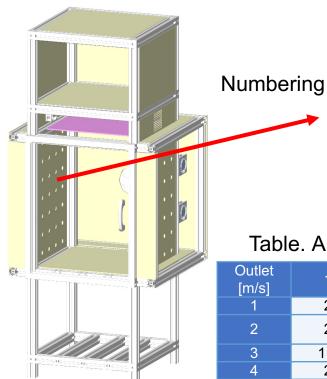


Figure. External view of the prototype.

1-1	(1-2)	1-3	1-4
2-1	2-2	2-3	2-4
3-1	3-2	(3-3)	3-4
4-1	4-2	4-3	4-4
(5-1)	5-2	(5-3)	5-4
6-1	6-2	6-3	6-4
7-1	7-2	7-3	7-4

Table. Airflow velocity distribution

Outlet [m/s]	1	2	3	4
1	2	1.9	2	1.9
2	2	1.9	1.9	1.9
3	1.9	1.9	1.9	1.9
4	2	2	1.9	1.9
5	2	1.9	2	2
6	2	2.1	2.1	1.9
7	2	2	2.1	2

- ✓ Successful generation of parallel airflow
- ✓ Reduced the ΔT inside the chamber to $\Delta 0.6$ °C.

Parallel circulating flow

	Grund	μG Unique Challenges	Difficulty
Temperature and Humidity	Ventilation with outside air	Temperature and humidity control within a small chamber, despite heat from equipment and transpired water from plants, by using dehumidification and ventilation.	Medium
Control	Air conditioning system	Active air circulation system to homogenize the internal atmosphere in the absence of natural convection	Low

Prototype equipped with a flow-straightening plate.

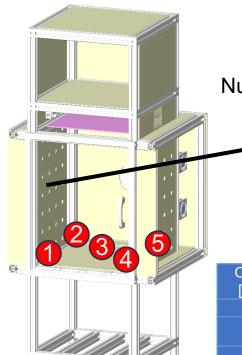


Figure. External view of

the prototype.

Numbering

Table. Airflow velocity distribution

Outlet [m/s]	1	2	3	4
1	2	1.9	2	1.9
2	2	1.9	1.9	1.9
3	1.9	1.9	1.9	1.9
4	2	2	1.9	1.9
5	2	1.9	2	2
6	2	2.1	2.1	1.9
7	2	2	2.1	2

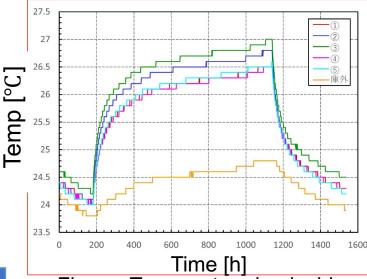


Figure. Temperature log inside the chamber.

- ✓ Successful generation of parallel airflow
- ✓ Reduced the ΔT inside the chamber to $\Delta 0.6$ °C.

Nutrient solution supply / Growth soil selection

	Grund	μG Unique Challenges	Difficulty
	Circulation of large	Implementation of a system that integrates nutrient solution, recovered water, and air into the growth medium.	High
Nutrient solution supply	volumes of nutrient solution, with complete replacement.	Maintenance of nutrient balance through species-specific formulations of nutrient solutions, optimized for plant-specific absorption characteristics.	High+
Growth medium materials and encapsulation methods	High flexibility in the selection of construction materials.	Selection of growth media suitable for application in μG environments. Safety control, Water control, etc.	Medium

Exploration of growth soil suitable for use under microgravity conditions.

Rock wool

Melamine sponge

mixture of melamine and urethane sponge

Clay pebbles

Clay pebbles and water-retaining gel

Polyester fibers

**A After cultivation

LXA

Amount of yielded fruit

Table 1. Amount of yielded fruit

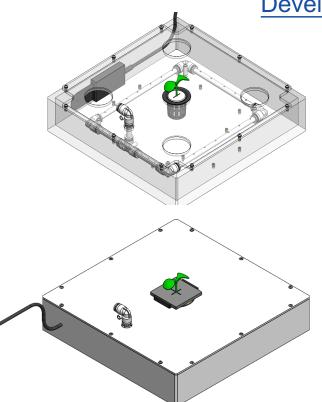
Mini Cucumber		Cherry Tomato		Soybe	ans	Watercress		Radi	Radish	
Substrates	yield fruit [g]									
MIX	920.2	C&W	143.3	MIX	33.7	C&W	144.2	RW	30.9	
RW	863.9	RW	119.4	Polyester fibers	24.5	Polyester fibers	131.8	Polyester fibers	27.7	
Polyester fibers	688.2	Polyester fibers	111.0	RW	24.3	MIX	113.3	MIX	26.4	
C&W	682.5	Melamine sponge	43.7	Melamine sponge	19.4	Melamine sponge	102.7	Melamine sponge	25.3	
Melamine sponge	654.5	MIX	36.8	Clay pebbles	6.9	RW	94.7	C&W	25.1	
Clay pebbles	194.5	Clay pebbles	0.0	C&W	6.6	Clay pebbles	69.9	Clay pebbles	11.6	

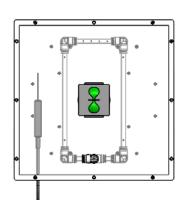
RW = Rock wool, MIX = Mixture of melamine and urethane sponge C&W = Clay pebbles and water-retaining gel

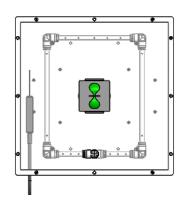
RW Melamine

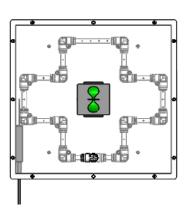
MIX

Clay pebbles

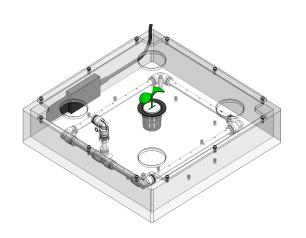

C&W Polyester




Nutrient solution supply / Growth soil selection

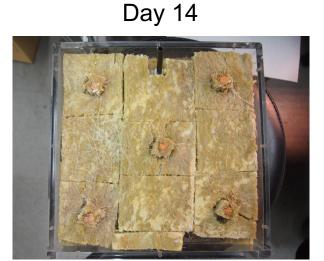

		Grund	μG Unique Challenges	Difficulty
	Growth medium and encapsulation methods	Installation and operation facilitated by the use of gravity.	Encapsulation of the medium using flame-retardant materials to ensure both fire prevention of particle dispersion under microgravity conditions.	Medium
ev	Nutrient solution	Application of gravity-driven watering and diffusion processes.	Development of techniques to uniformly distribute and retain nutrient solution throughout the entire medium.	Medium
	evaporation reduction	ion and	Reduction of the medium's exposure to air to minimize water loss through evaporation and inhibit moss proliferation.	Medium

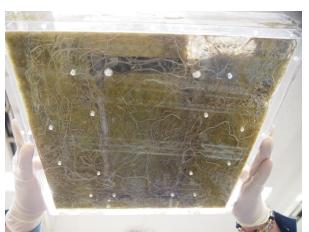
Development of the root-zone system



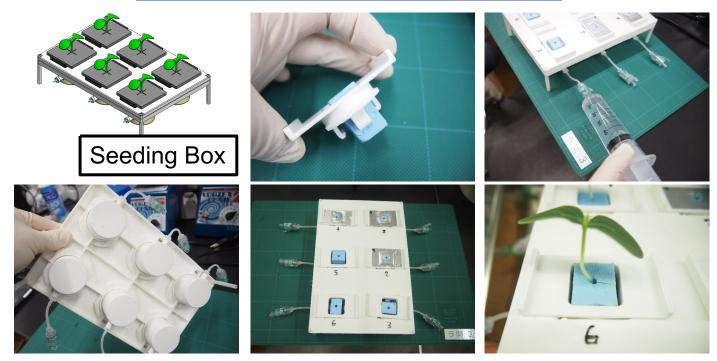
Targets

- No leaking.
- Distribute water evenly.
- Piping can be changed depending on what soil and plant is used.




Development of the root-zone system

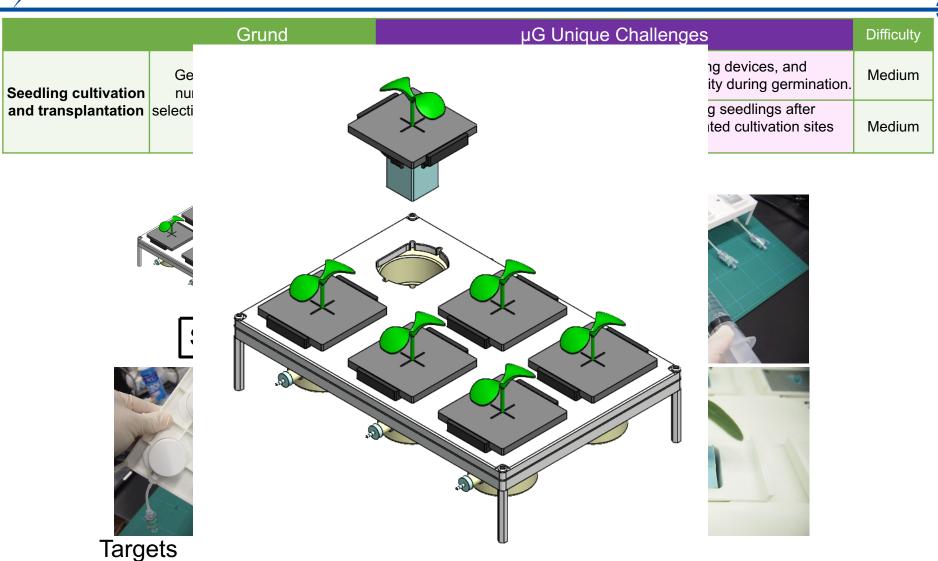
Before cultivation


After cultivation

Seedling cultivation and transplantation

	Grund	μG Unique Challenges	Difficulty
Seedling	Germination in a dedicated nursery facility, followed by	Compact growth media, watering devices, and environmental controls for temperature and humidity during germination.	Medium
cultivation and transplantation	selection of healthy	Establishment of procedures for transplanting seedlings after germination and reestablishing them at designated cultivation sites.	Medium

Seedling growth unit suitable for use µG



Targets

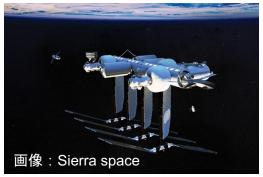
- Seed is packed at the ground
- The seeding is easily moved from the seeding box to the soil box.

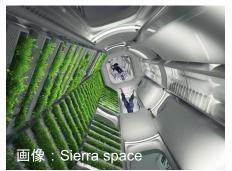
XA Seedling cultivation and transplantation

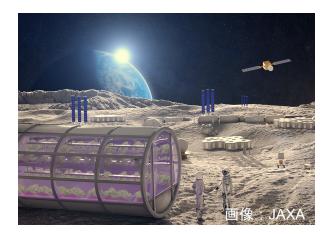
- Seed is packed at the ground
- Using quick connect / disconnect
- The seeding is easily moved from the seeding box too the soil box.

- Introduction
- Challenges in µG
- Concept of the developing device
- Current states
- Summary

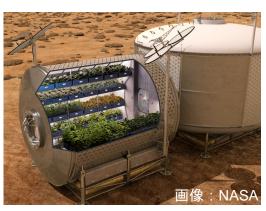
XA Summary

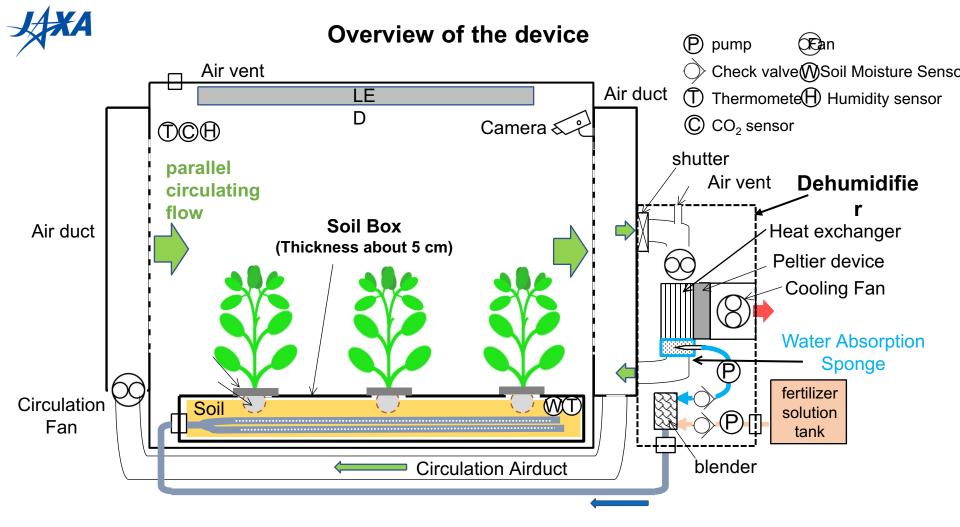

Summary


Japan has been conducting research in fundamental plant science.


 JAXA is developing a large-scale cultivation system to enable research and development for space exploration.

The goal is to provide demonstration and experimental environments on the ISS


and future commercial space stations.



Back up

Key points of the device

- Temperature and Humidity Control: by turning the dehumidifier ON/OFF.
- **Ventilation/Circulation:** Parallel circulation flow by setting up an air duct. Opening and closing the shutters enable/disable internal circulation or ventilation.
- **Dehumidification and Water Supply:** Dehumidified water is temporarily stored in a sponge, then drawn out with a needle, mixed with nutrient solution, and supplied into the Soil Box.

Previous works on the soil selection

Rock wool

Clay pebbles

Melamine sponge

Clay pebbles and water-retaining gel

mixture of melamine and urethane sponge

Polyester fibers

- Watered every day
- No water circulation
- Examined in a round bottle.

Previous works on the soil selection

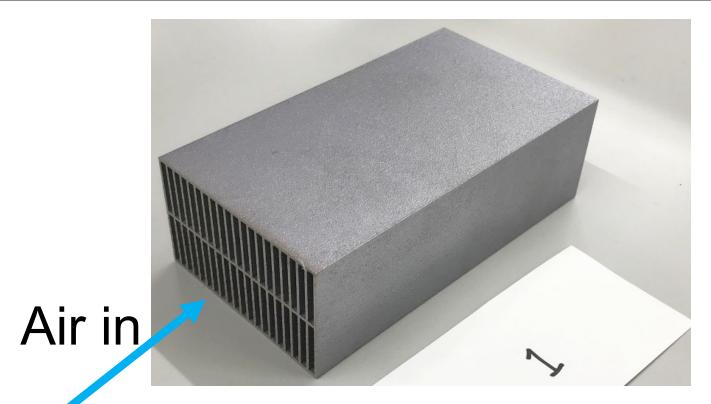
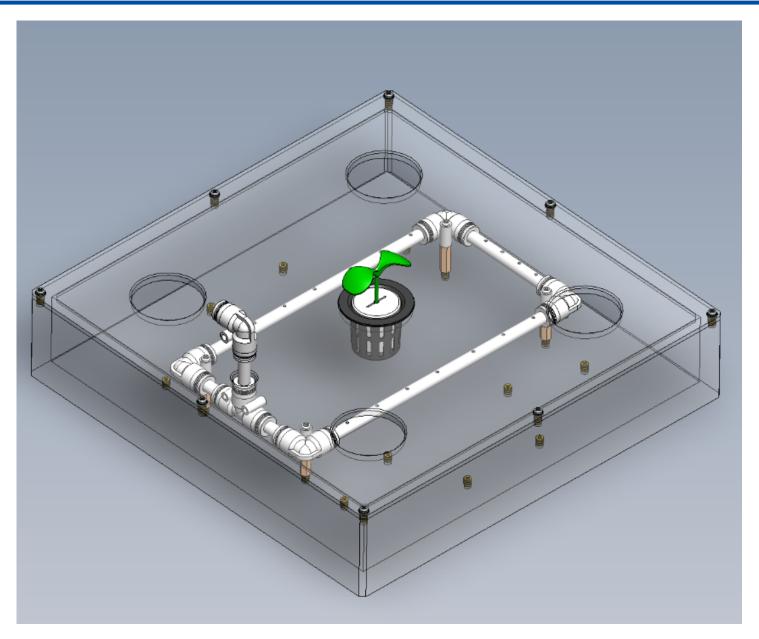
Table1. Amount of yielded fruit

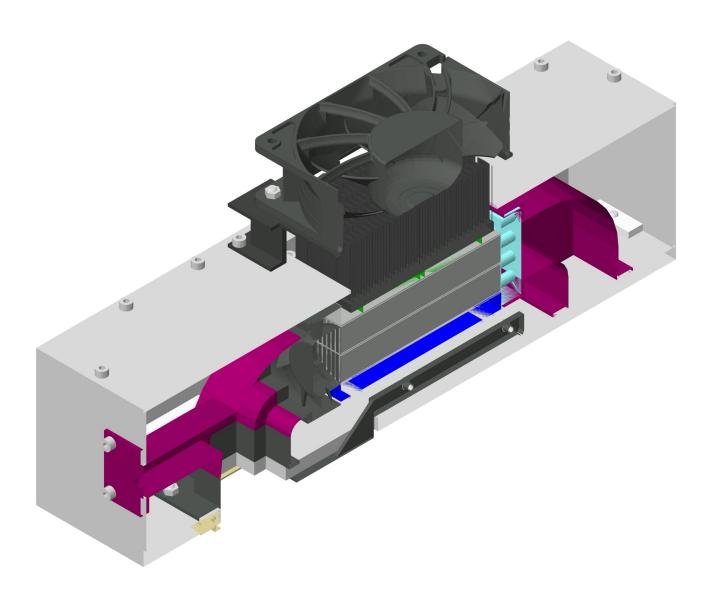
Mini Cucumber		Cherry Tomato		Soybeans		Watercress		Radish	
[Day 86] Substrates	yield fruit [g]	[Day 86] Substrates	yield fruit [g]	[Day 72] Substrates	yield fruit [g]	[Day 86] Substrates	yield fruit [g]	[Day 86] Substrates	yield fruit [g]
mixture of melamine and urethane sponge	920.2	Clay pebbles and water-retaining gel	143.3	mixture of melamine and urethane sponge	33.7	Clay pebbles and water-retaining gel	144.2	Rock wool	30.9
Rock wool	863.9	Rock wool	119.4	Polyester fibers	24.5	Polyester fibers	131.8	Polyester fibers	27.7
Polyester fibers	688.2	Polyester fibers	111	Rock wool	24.3	mixture of melamine and urethane sponge	113.3	mixture of melamine and urethane sponge	26.4
Clay pebbles and water-retaining gel	682.5	Melamine sponge	43.7	Melamine sponge	19.4	Melamine sponge	102.7	Melamine sponge	25.3
Melamine sponge	654.5	mixture of melamine and urethane sponge	36.8	Clay pebbles	6.9	Rock wool	94.7	Clay pebbles and water-retaining gel	25.1
Clay pebbles	194.5	Clay pebbles	0	Clay pebbles and water-retaining gel	6.6	Clay pebbles	69.9	Clay pebbles	11.6

Table2. Production efficiency by the water use (fruit[g]/water used[1L])

Mini Cucumber		Cherry Tomato		Soybeans		Watercress		Radish	
	Production								
	Efficiency								
Substrate	[g/L]								
Clay pebbles and		Clay pebbles and				Clay pebbles and		Clay pebbles and	
water-retaining gel	74.07	water-retaining gel	18.02	Polyester fibers	3.205	water-retaining gel	31.78	water-retaining gel	59.76
Polyester fibers	66.705	Polyester fibers	17.66	RW	2.91	Melamine sponge	30.23	Melamine sponge	44
				melamine		melamine			
Melamine sponge	60.785	RW	16.195	and urethane	2.9	and urethane	26.83	RW	41.06
melamine								melamine	
and urethane								and urethane	
sponge	59.65	Melamine sponge	7.71	Melamine sponge	2.64	RW	24.3	sponge	40.62
		mixture of							
		melamine		Clay pebbles and					
RW	59.185	and urethane	4.76	water-retaining gel	1.215	Clay pebbles	22.3	Polyester fibers	37.11
Clay pebbles	44.695	Clay pebbles	0	Clay pebbles	1.21	Polyester fibers	21.73	Clay pebbles	27.78

Dehumidifier


Fig. Aluminum alloy (AlSi10Mg) slit, formed using a 3D printer.

Cooling by Peltier device
Water is blown with the fan ⇒ Sponge

