
Sustainable Farming Beyond Earth: Growing Plants Anywhere, Anytime

Presenter: Georgina Riu Puche, georgina.riu-puche@student.isae-supaero.fr, ISAE SUPAERO

Supervisors: Nicolas Drougard & Thibault Gateau, name.surname@isae.fr, ISAE SUPAERO

Master's Student in Aerospace Engineerings a g Major in Space Systems SUPAERO

Chopper: the next generation Mars Helicopter

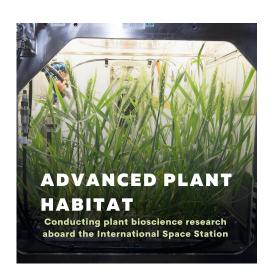
Aerodynamic modeling of the interaction between rotors, experiment & CFD simulation

Aerodynamics engineer at ONAerospace

Space Studies Program 2023

Systems The Spring Institute for Forests on the Moon

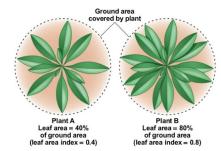
WBA Analog Astronaut LunAres Habitat, 10th Oct - 28th Oct



Background

 ALICE (Al for Life in spaCE) contributes to the research domain of Precision Agriculture in Life Support Systems with the general goal of using Artificial Intelligence for maximizing production and minimizing resource consumption

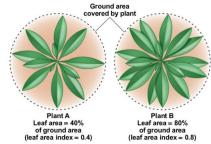
- There are many plant habitats with inspiring goals:
 - Advance Plant Habitat (NASA) successfully produced fruit on the ISS. It offers environmental control (CO2, lights, moisture, temperature, etc.)
 - **Veggie** (NASA)
 - **EDEN ISS** (DLR)
 - **EDEN LUNA** (DLR)
- But few of them use **Artificial Intelligence** (e.g. Interstellar Lab)



Monitor and predict the plant growth in extreme environments

Compute Leaf Area through Computer Vision and regression models in a nondestructive way*

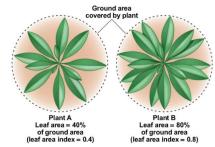
Monitor and predict the plant growth in extreme environments



Compute Leaf Area through Computer Vision and regression models in a nondestructive way*

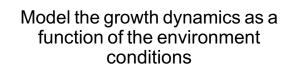
Monitor and predict the plant growth in extreme environments

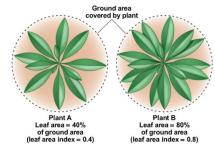
Compute Leaf Area through Computer Vision and regression models in a nondestructive way*



Monitor and predict the plant growth in extreme environments

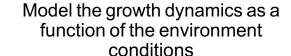
Model the growth dynamics as a function of the environment conditions


Compute Leaf Area through Computer Vision and regression models in a nondestructive way*

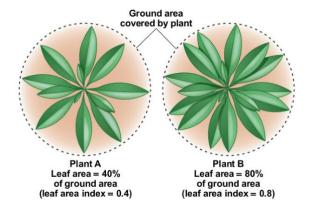

Monitor and predict the plant growth in extreme environments

Analyze different light conditions effect on plant monitoring

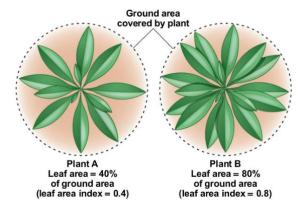
Compute Leaf Area through Computer Vision and regression models in a nondestructive way*


Monitor and predict the plant growth in extreme environments

Analyze different light conditions effect on plant monitoring

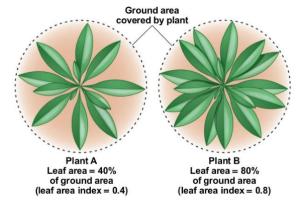


Planning of Dry Matter Production for resources limitation purposes



Compute Leaf Area through Computer Vision and regression models in a non-destructive way

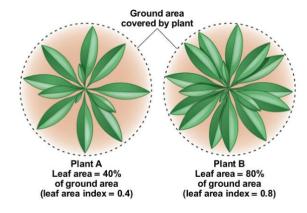
Compute Leaf Area through Computer Vision and regression models in a non-destructive way



Credit: Abdellatif, Mostafa & Valdenebro, Esaiy. (2016). Storm-water Management: Evapo-transpiration & Cooling with Water. 10.13140/RG.2.2.24862.23360.

Create a dataset of images of plants grown using hydroponics

Compute Leaf Area through Computer Vision and regression models in a non-destructive way

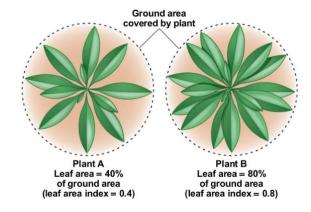

Credit: Abdellatif, Mostafa & Valdenebro, Esaiy. (2016). Storm-water Management: Evapo-transpiration & Cooling with Water. 10.13140/RG.2.2.24862.23360.

Create a dataset of images of plants grown using hydroponics

Take images of each pot from the top

Compute Leaf Area through Computer Vision and regression models in a non-destructive way

Credit: Abdellatif, Mostafa & Valdenebro, Esaiy. (2016). Storm-water Management: Evapo-transpiration & Cooling with Water. 10.13140/RG.2.2.24862.23360.


Create a dataset of images of plants grown using hydroponics

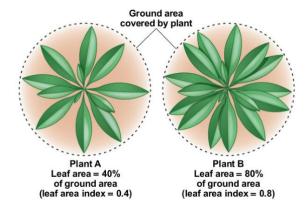
Take images of each pot from the top

Record environmental data (humidity, temperature and light)

Compute Leaf Area through Computer Vision and regression models in a non-destructive way

Credit: Abdellatif, Mostafa & Valdenebro, Esaiy. (2016). Storm-water Management: Evapo-transpiration & Cooling with Water. 10.13140/RG.2.2.24862.23360.

Create a dataset of images of plants grown using hydroponics


Take images of each pot from the top

Record environmental data (humidity, temperature and light)

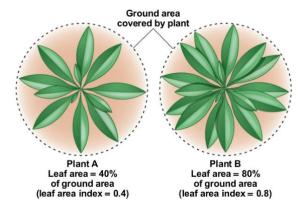
Measure the leaf area physically

Compute Leaf Area through Computer Vision and regression models in a non-destructive way

Credit: Abdellatif, Mostafa & Valdenebro, Esaiy. (2016). Storm-water Management: Evapo-transpiration & Cooling with Water. 10.13140/RG.2.2.24862.23360.

Create a dataset of images of plants grown using hydroponics

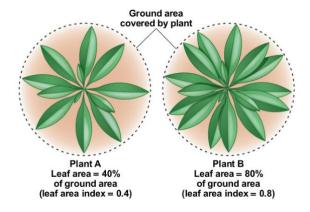
Take images of each pot from the top


Record environmental data (humidity, temperature and light)

Measure the leaf area physically

Creation of the Space Farming Dataset
(No ground-truth segmentation mask provided)

Compute Leaf Area through Computer Vision and regression models in a non-destructive way

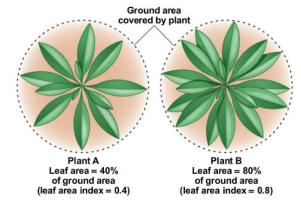

Credit: Abdellatif, Mostafa & Valdenebro, Esaiy. (2016). Storm-water Management: Evapo-transpiration & Cooling with Water. 10.13140/RG.2.2.24862.23360.

Create a dataset of images of plants grown using hydroponics

Train available plant segmentation models to the expected image input

Compute Leaf Area through Computer Vision and regression models in a non-destructive way

Credit: Abdellatif, Mostafa & Valdenebro, Esaiy. (2016). Storm-water Management: Evapo-transpiration & Cooling with Water. 10.13140/RG.2.2.24862.23360.


Create a dataset of images of plants grown using hydroponics

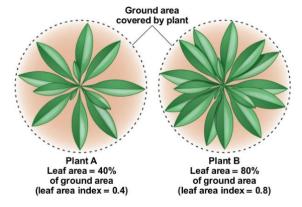
Train available plant segmentation models to the expected image input

Find currently labeled datasets similar to our target

Compute Leaf Area through Computer Vision and regression models in a non-destructive way

Credit: Abdellatif, Mostafa & Valdenebro, Esaiy. (2016). Storm-water Management: Evapo-transpiration & Cooling with Water. 10.13140/RG.2.2.24862.23360.

Create a dataset of images of plants grown using hydroponics

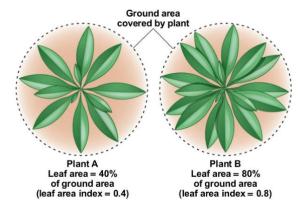

Train available plant segmentation models to the expected image input

Find currently labeled datasets similar to our target

Train object segmentation models with the best fit

Compute Leaf Area through Computer Vision and regression models in a non-destructive way

Credit: Abdellatif, Mostafa & Valdenebro, Esaiy. (2016). Storm-water Management: Evapo-transpiration & Cooling with Water. 10.13140/RG.2.2.24862.23360.

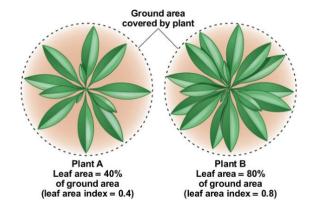

Create a dataset of images of plants grown using hydroponics

Train available plant segmentation models to the expected image input

Find currently labeled datasets similar to our target
Train object segmentation models with the best fit
Implement the model on our Space Farming Dataset

Compute Leaf Area through Computer Vision and regression models in a non-destructive way

Credit: Abdellatif, Mostafa & Valdenebro, Esaiy. (2016). Storm-water Management: Evapo-transpiration & Cooling with Water. 10.13140/RG.2.2.24862.23360.


Create a dataset of images of plants grown using hydroponics

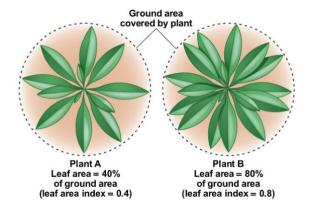
Train available plant segmentation models to the expected image input

Test the model on the image data generated to extract Leaf Area

Compute Leaf Area through Computer Vision and regression models in a non-destructive way

Credit: Abdellatif, Mostafa & Valdenebro, Esaiy. (2016). Storm-water Management: Evapo-transpiration & Cooling with Water. 10.13140/RG.2.2.24862.23360.

Create a dataset of images of plants grown using hydroponics


Train available plant segmentation models to the expected image input

Test the model on the image data generated to extract Leaf Area

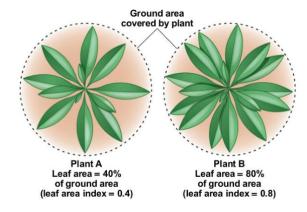
Count the prediction mask pixels from plant segmentation

Compute Leaf Area through Computer Vision and regression models in a non-destructive way

Credit: Abdellatif, Mostafa & Valdenebro, Esaiy. (2016). Storm-water Management: Evapo-transpiration & Cooling with Water. 10.13140/RG.2.2.24862.23360.

Create a dataset of images of plants grown using hydroponics

Train available plant segmentation models to the expected image input


Test the model on the image data generated to extract Leaf Area

Count the prediction mask pixels from plant segmentation

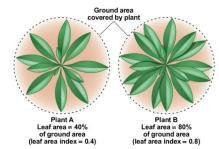
Use linear regression to define a model that matches # of pixels with real area

Compute Leaf Area through Computer Vision and regression models in a non-destructive way

Credit: Abdellatif, Mostafa & Valdenebro, Esaiy. (2016). Storm-water Management: Evapo-transpiration & Cooling with Water. 10.13140/RG.2.2.24862.23360.

Create a dataset of images of plants grown using hydroponics

Train available plant segmentation models to the expected image input


Test the model on the image data generated to extract Leaf Area

Count the prediction mask pixels from plant segmentation

Use linear regression to define a model that matches # of pixels with real area

Test the results with a new sample and compare to the real area (obtain the segmentation + regression trained model)

Compute Leaf Area through Computer Vision and regression models in a nondestructive way

Monitor and predict the plant growth in extreme environments

Analyze different light conditions effect on plant monitoring

Planning of Dry Matter Production for resources limitation purposes

function of the environment conditions

Model the growth dynamics as a

Model the growth dynamics as a function of the environment conditions

Model the growth dynamics as a function of the environment conditions

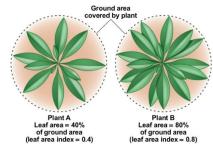
Adapt a dynamic growth model to Arugula's growth dynamics

Model the growth dynamics as a function of the environment conditions

Adapt a dynamic growth model to Arugula's growth dynamics

Measure physically the Leaf Area of a real
Arugula evolution

Model the growth dynamics as a function of the environment conditions



Adapt a dynamic growth model to Arugula's growth dynamics

Measure physically the Leaf Area of a real Arugula evolution

Compare the results obtained by the dynamic model and the real measures

Compute Leaf Area through Computer Vision and regression models in a nondestructive way

Monitor and predict the plant growth in extreme environments

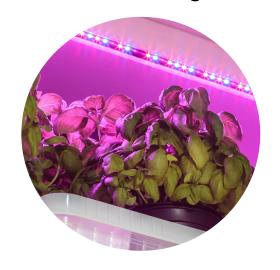
Analyze different light conditions effect on plant monitoring

Planning of Dry Matter Production for resources limitation purposes

function of the environment conditions

Model the growth dynamics as a

Analyze different light conditions effect on plant monitoring


Analyze different light conditions effect on plant monitoring

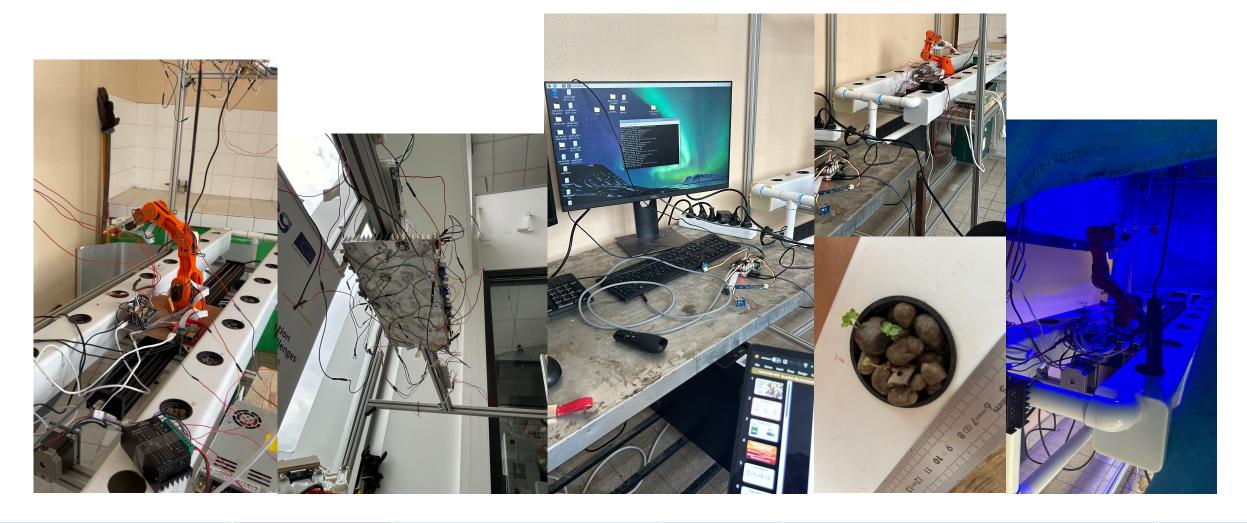
Challenge the segmentation + regression model with different lightning set ups

Analyze different light conditions effect on plant monitoring

Challenge the segmentation + regression model with different lightning set ups

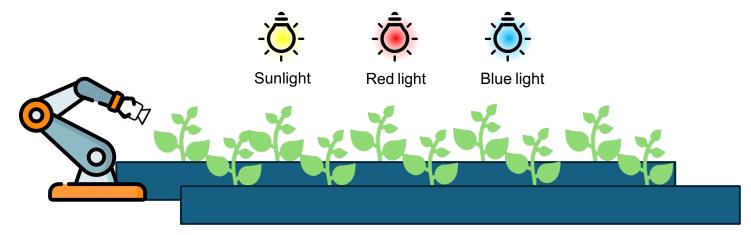
Compute the predicted growth of Leaf Area with the dynamic model

Analyze different light conditions effect on plant monitoring


Challenge the segmentation + regression model with different lightning set ups

Compute the predicted growth of Leaf Area with the dynamic model

Compare the results with the physical measurements


Pictures of the experiment

Space Farming Dataset

Experiment (2 weeks each)

Measurements:

Temperature, Humidity

Light intensity

PH Water

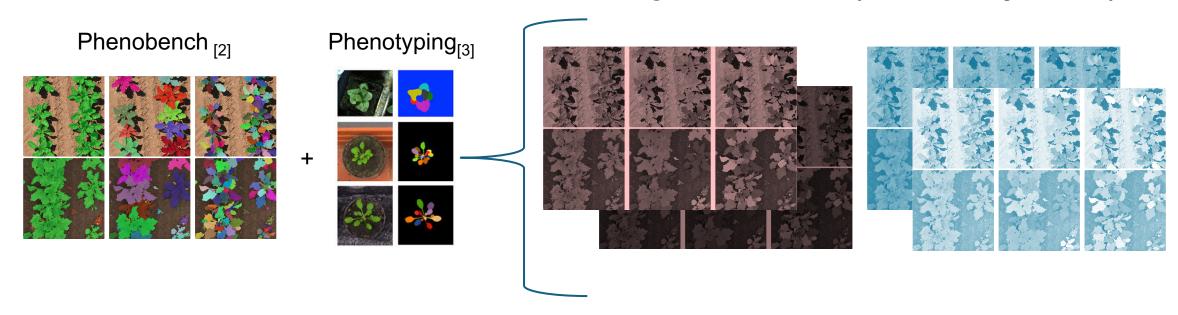
Leaf Area

Arugula's seeds

- Nutritional
- Medicinal
- Vitamin K (bone health and bone formation)
- Antioxidants
- Source of carotenoids (macular degradation slowed down)

Hydroponics systems are the most optimal choice in terms of **complexity**, **mass**, **volume** and **power** consumption [1].

[1] Marina Mileni Munari, Nicolas Drougard, and Thibault Gateau. Modeling and optimization of the design of a robotic hydroponic system. The VIIth Space Resources Conference (KGK2024), 2024



Plant Segmentation Model Training

Training: Phenobench datset + Phenotyping dataset

Model: RESN50

Data augmentation - filter by color + change intensity

[2] Jan Weyler, Federico Magistri, Elias Marks, Yue Linn Chong, Matteo Sodano, Gianmarco Roggiolani, Nived Chebrolu, Cyrill Stachniss, and Jens Behley. PhenoBench — A Large Dataset and Benchmarks for Semantic Image Interpretation in the Agricultural Domain. arXiv preprint, 2023.

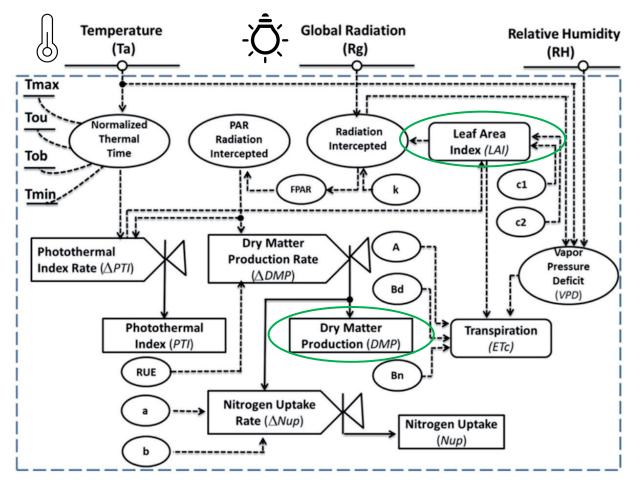
[3] M. Minervini, A. Fischbach, H.Scharr, and S.A. Tsaftaris. Finely-grained annotated datasets for image-based plant phenotyping. Pattern Recognition Letters, pages 1-10, 2015, doi:10.1016/j.patrec.2015.10.013

From estimated mask to LA (sunlight)

Linear Regression

$$LA = a * x + b$$

 x : #pixels


LOOCV

(Leave-One-Out Cross Validation)

- Step 1: Pick one measurement. Hide it.
- **Step 2:** Fit the regression using the other N–1 points.
- **Step 3:** Predict the hidden leaf area from its pixel count.
- **Step 4:** Compute the error based on the true value.
- **Step 5:** Repeat for each measurement →every point is left out once.
- Step 6: Compute the average error.

Arugula's Dynamic Model

Simple model!

[4] Antonio Martínez-Ruiz, Irineo Lopez-Cruz, Agustin Ruiz Garcia, Joel Pineda, and Jorge Prado Hernández. Hortsyst: A dynamic model to predict growth, nitrogen uptake, and transpiration of greenhouse tomatoes. Chilean journal of agricultural research, 79:89–102, 02 2019.

Arugula's Dynamic Model

Output	Parameter	Symbol	Units	Nominal value	Source	
DMP	Maximum temperature	T_{max}	$^{\circ}C$	15	Measured	
	Minimum temperature	T_{min}	$^{\circ}C$	30	Measured	
	Lower optimal temperature	T_{ol}	$^{\circ}C$	13		
	Upper optimal temperature	T_{ou}	$^{\circ}C$	24		
	Radiation use efficiency	RUE	gMJ^{-1}	1.45	[27]	
PTI	Extinction coefficient	k	-	0.7	[1]	
	PTI Initial condition	PTI_0	MJd^{-1}	0.025	[1]	
Nup	N^*	a	gm^{-2}	TBD	Data acquisition	
	Slope of the relationship	b	-	TBD	Data acquisition	
LAI	Slope of the curve	c1	-	TBD	Data acquisition	
	Intersection coefficient	c2	-	TBD	Data acquisiton	
ETc	Radiative coefficient	A	-	0.49	[28]	
	Daytime aerodynamic coefficient	B_d	Wm^{-2}, kPa^{-1}	11.2	[28]	
	Nighttime aerodynamic coefficient	B_n	Wm^{-2}, kPa^{-1}	8.28	[28]	

 $^{\mathrm{TBD}}$ To be determined

[4] Antonio Martínez-Ruiz, Irineo Lopez-Cruz, Agustin Ruiz Garcia, Joel Pineda, and Jorge Prado Hernández. Hortsyst: A dynamic model to predict growth, nitrogen uptake, and transpiration of greenhouse tomatoes. Chilean journal of agricultural research, 79:89–102, 02 2019.

^{*} Nitrogen concentration in dry biomass at the end of the exponential growth period.

Experiment statistics

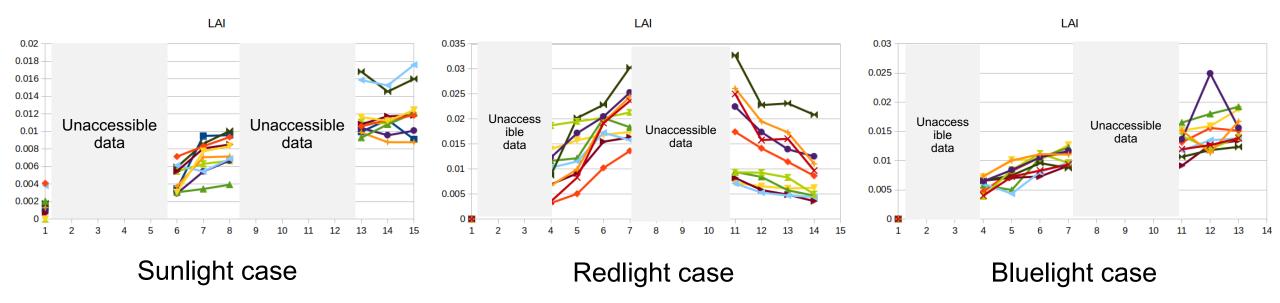
Statistical method: One Way ANOVA

Software: Python

	One Way ANOVA			
Independent variables	Light			
Dependent variables	LAI			

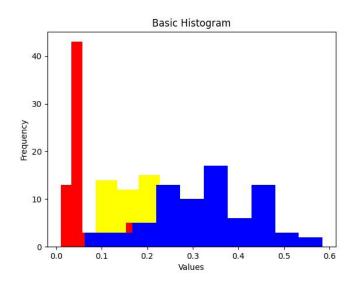
Level of Significance: 0.05

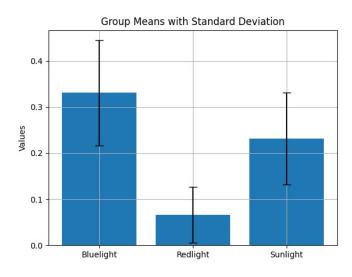
If p-value < than Level of Significance: Post-hoc analysis

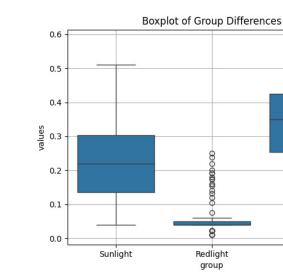


Pic du Midi Experiment

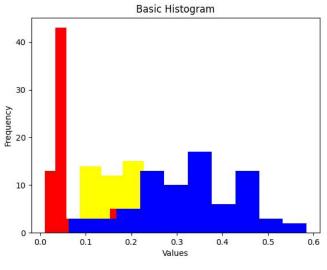
Experimental data

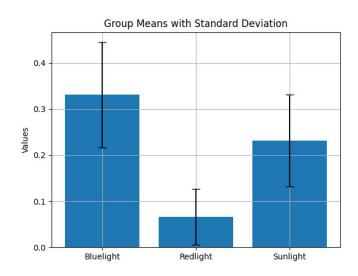


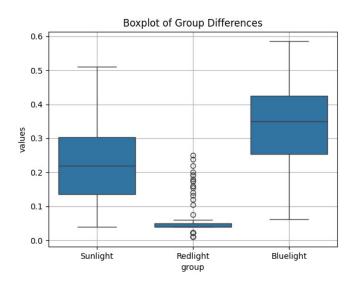

One-way Anova Statistics


Conditions:

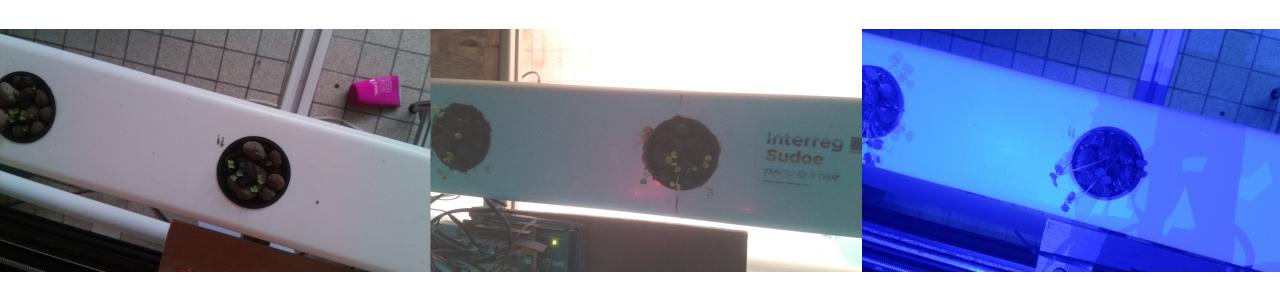
- One day (day 13 experiment),
- 75 crops per case


Bluelight


Post-hoc results

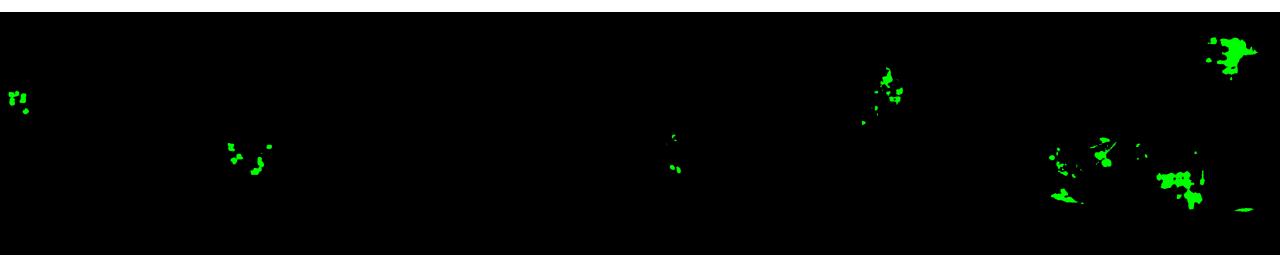

Conditions:

- One day (day 13 experiment),
- 75 crops per case



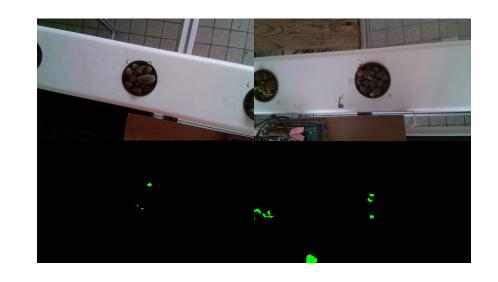
Multiple Comparison of Means – Tukey HSD, FWER=0.05								
group1	group2	meandiff	p-adj	lower	upper	reject		
Bluelight Bluelight Redlight				-0.3011 -0.1354 0.1293		True True True		

Plant segmentation

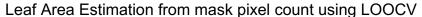


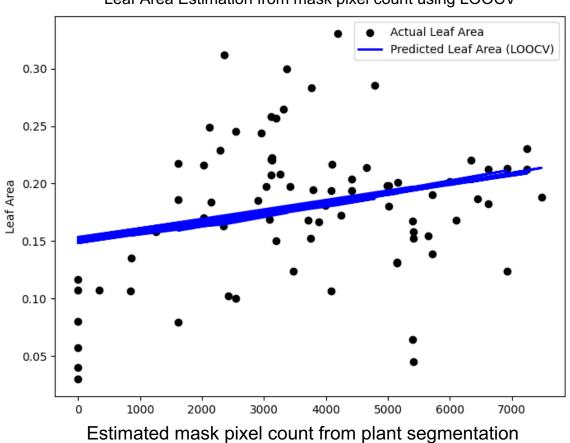
Qualitative assessment

Plant segmentation


Qualitative assessment

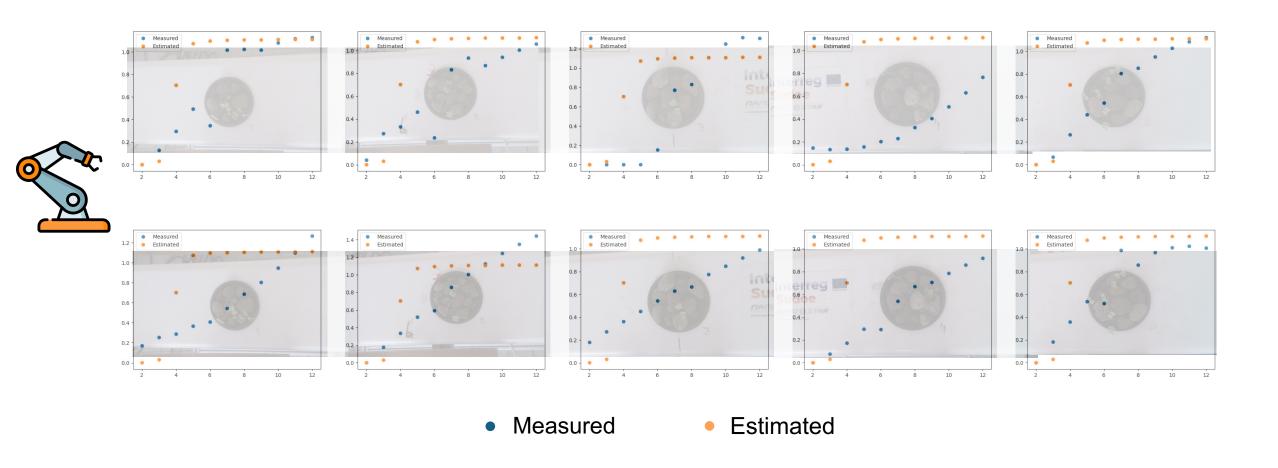
Dataset created!



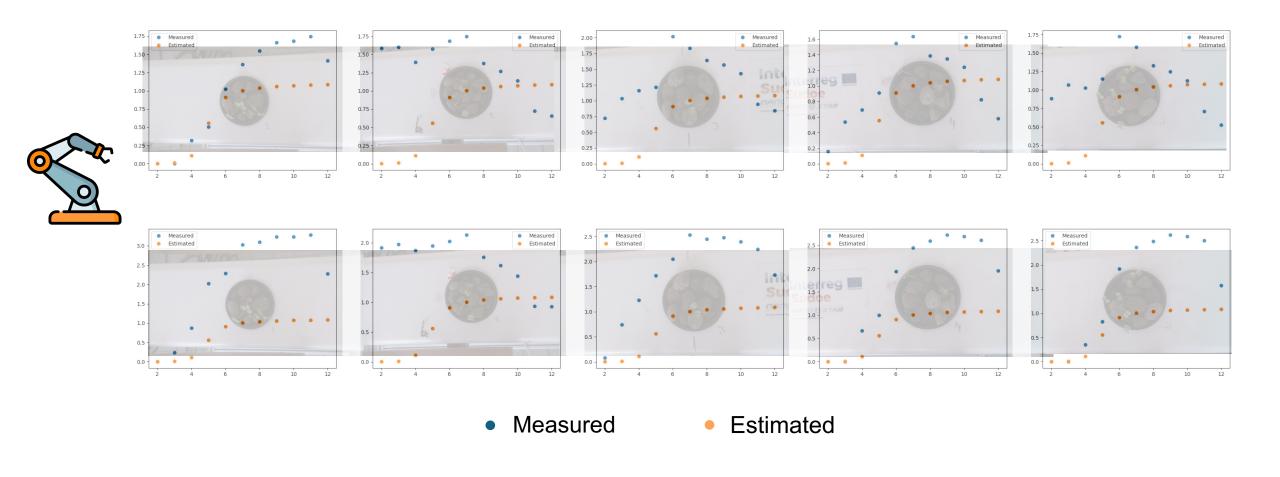


Days	case	pot	Normalized_LA_cm	date	Temp	RH	Temp Water	Light	PH Water	Image
1	bluelight	1	0	07/25/24	26	59	25.4375	173.91	6.66	image_2024-
2	bluelight	1	0	07/26/24	25	59	25.25	215.81	6.93	
3	bluelight	1	0.0235266864513187	07/27/24	26	61	25.625	215.81	6.91	
4	bluelight	1	0.0702586206896552	07/28/24	26	65	26.25	187.98	6.92	
5	bluelight	1	0.149479310344828	07/29/24	27	54	26.1875	139.47	6.96	image_2024-
6	bluelight	1	0.194310344827586	07/30/24	27	57	26.9375	147.68	7.06	image_2024-
7	bluelight	1	0.222789655172414	07/31/24	27	58	27.0625	142.47	6.86	image_2024-
8	bluelight	1	0.25008137731964	08/01/24	27	61	27.5625	134.65	6.43	image_2024-
9	bluelight	1	0.271155869402724	08/02/24	27	62	27	168.69	6.74	image_2024-
10	bluelight	1	0.284151546122281	08/03/24	25	55	25.8125	167.42	6.72	image_2024-
11	blueliaht	1	0.258120689655172	08/04/24	26	54	25.75	125.66	6.72	image 2024-

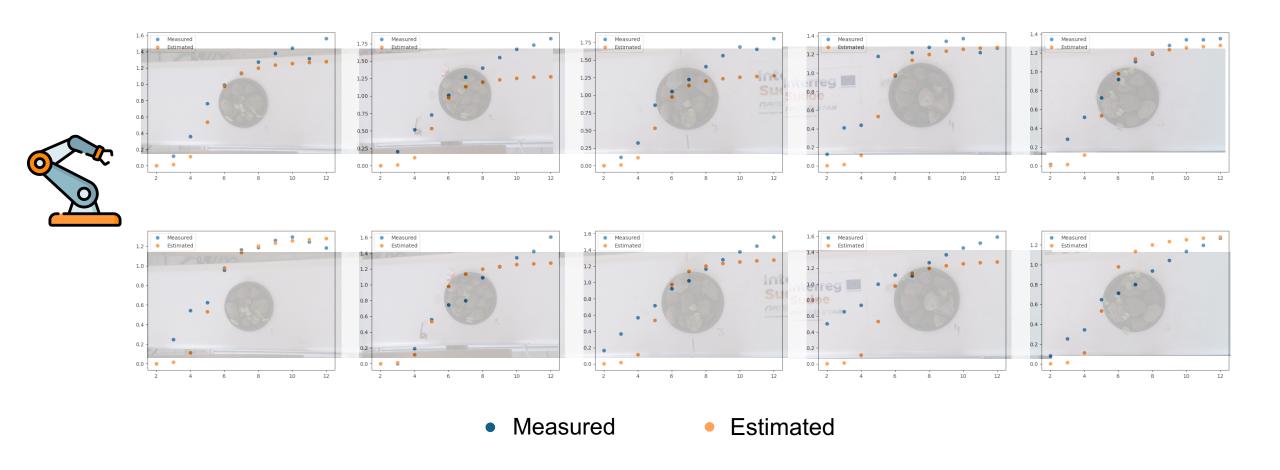
LA regression from segmentation mask



- Coefficient: [8.781e-06]
- Coefficient of determination (R²): 0.03



Arugula's Dynamic Model: Sunlight Case



Arugula's Dynamic Model: Redlight Case

Arugula's Dynamic Model: Bluelight Case

Experiment

Verified that growth depends on light setup

Experiment

Verified that growth depends on light setup

Segmentation

Brightness/contrast is crucial

Space Farming Dataset

Segmentation + regression model

Function of plant segmentation masks for crop monitoring

Experiment

Verified that growth depends on light setup

Segmentation

Brightness/contrast is crucial

Space Farming Dataset

Prediction model

Segmentation + regression model

Function of plant segmentation

masks for crop monitoring

Experiment

Verified that growth depends on light setup

Segmentation + regression + dynamic model


Segmentation

Brightness/contrast is crucial

Space Farming Dataset

Future Work

Acknowledgement

Thank you ESA Academy for the amazing opportunity to present my work at MELiSSA Conference