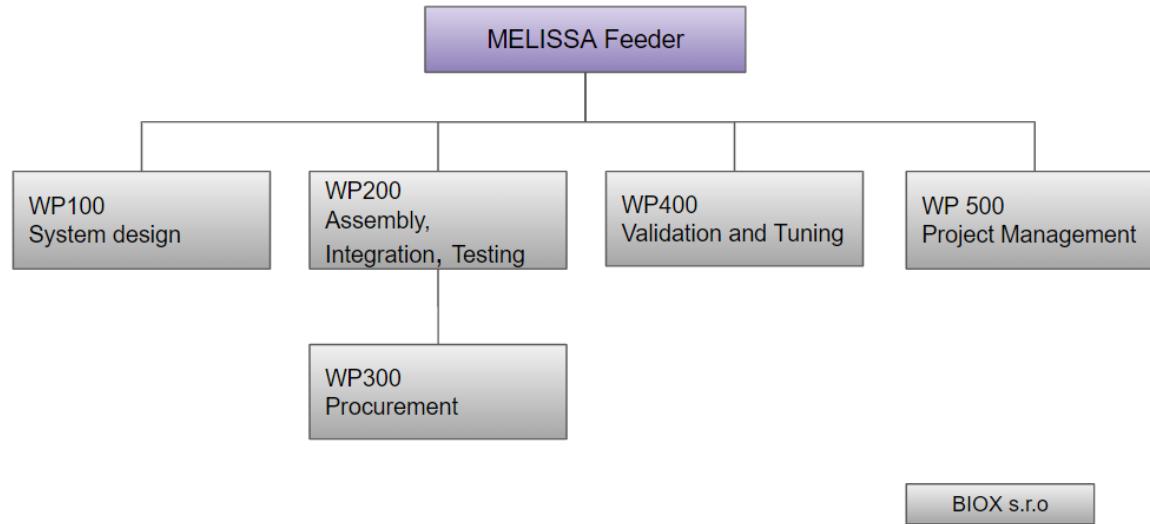


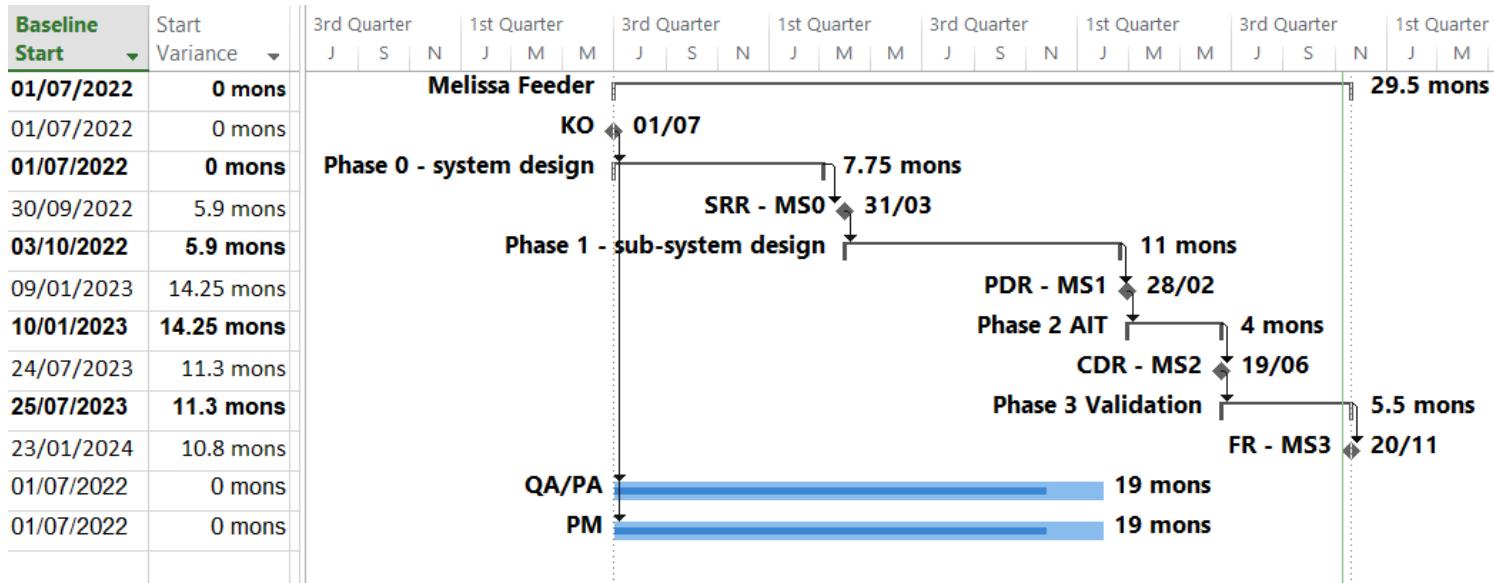
Rastislav Krampl; krampl@biox.sk

SK6_19

MELISSA Feeder: Biomass Harvesting system
for food preparation

Objectives




1. From existing processes and designs, the objective of this project shall be to **create the various technical parts of a recovery line** for processing of Limnospira biomass.
2. The liquid medium stream will be removing biomass and recycled back the cultivation medium and to the originating bioreactor.
3. Biomass will be further concentrated in two steps on microfilters and sieves and dried in consequent steps of vacuum drying.
4. Sterility of the reverse liquid medium loop must be kept, this is a critical system performance constraint. Contamination must be avoided. Operations of the device should be fully tested and automated, at least at the local level.

BioX Technologies

Prime

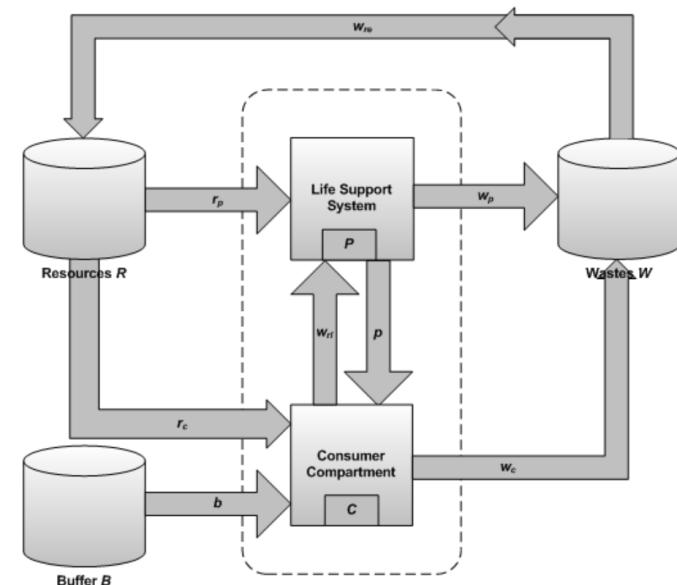
Logical work-flow

The project went significantly overtime, namely in Phase 0 and Phase 1. Phase 1 delay was mainly caused by a critical event, specifically a large accident involving flooding between the floors of the lab (fully outside the control of BioX).

Phase 2 caught up some lost time

Original duration: 19 mo

Final duration: ~30 mo

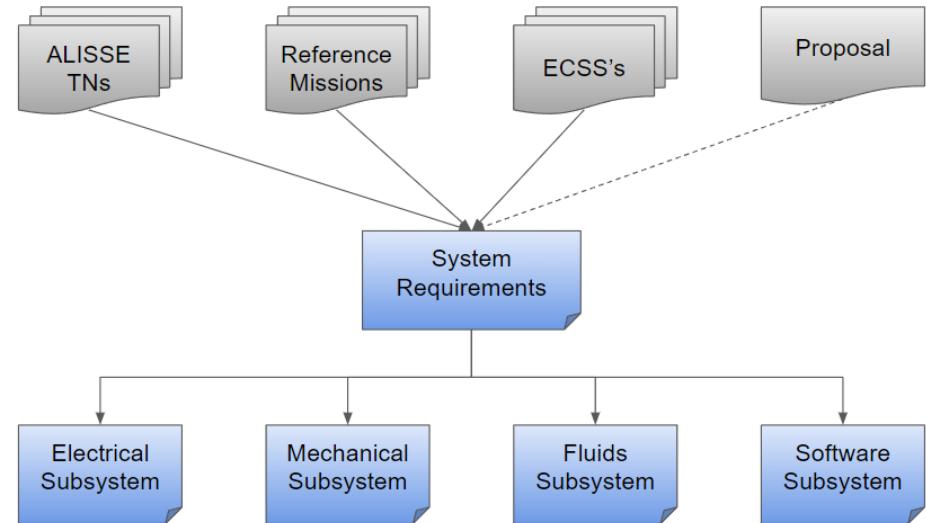


SK6_19

MELISSA Feeder: Biomass Harvesting system
for food preparation

TECHNICAL
DETAILS

Objective 1 - Requirements synthesis

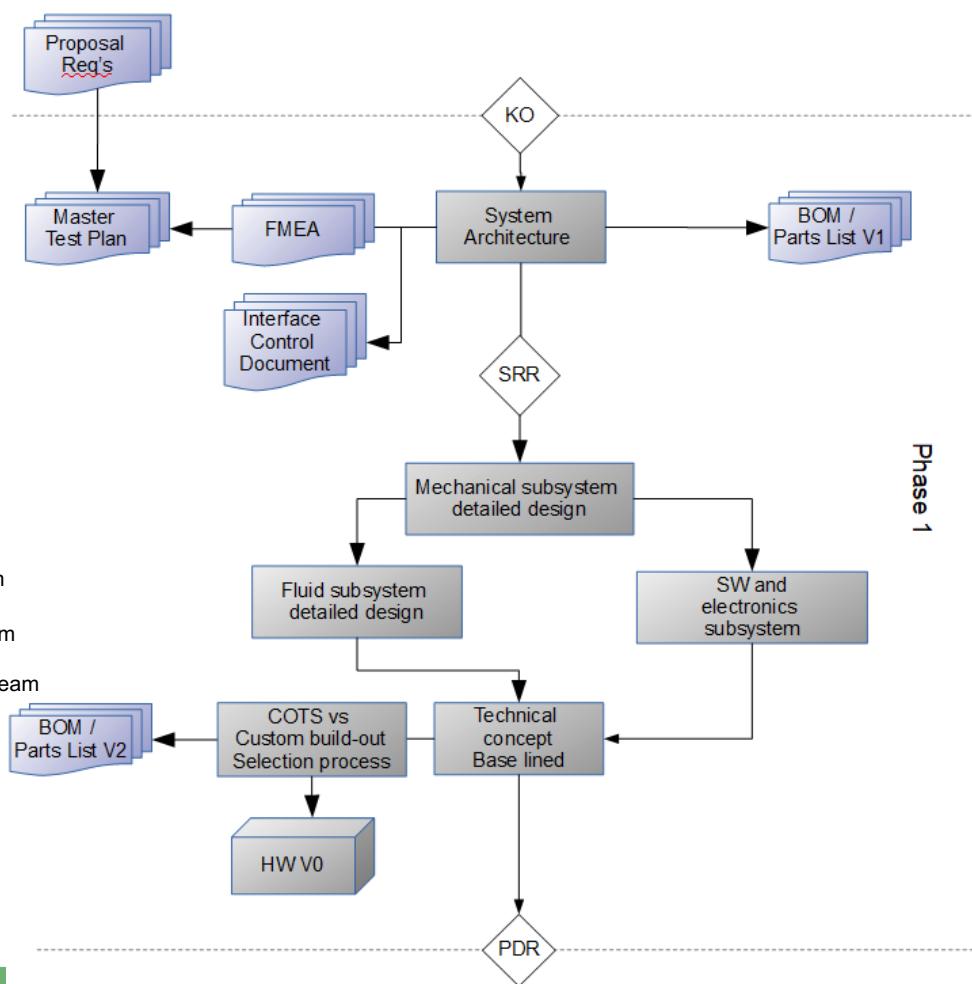
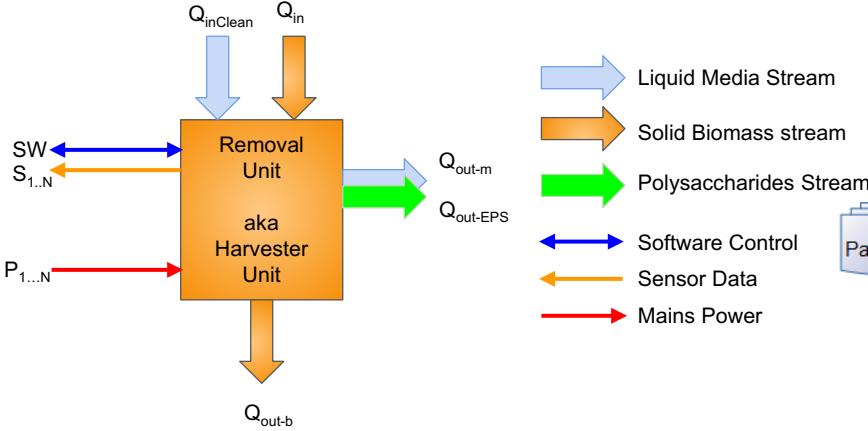

*External
Requirement
Drivers*

L1 Requirements

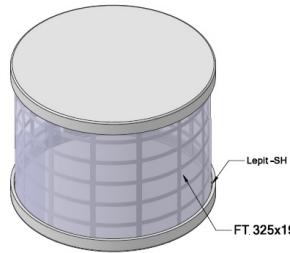
L2 Requirements

Requirements Hierarchy

*LLS Architecture concept from TN4 -
Mission Level*

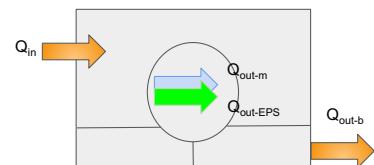



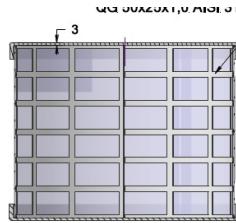
Objective 1 - Requirements synthesis


1	New ID	Standard Melissa Categories	Standard Melissa Sub-Categories	Requirement	Remark	Status	Rq Version #	Rq Level	Criticality	Traceability	Verif Procedure	Reviewed/inspected By	Test Procedure	Test Case	Pass/Fail	Report Reference	Mass
13	CONST-DES-03	Constraint	Design	The extraction unit (EU) is expected to have at least 2 fluid outputs: 1) biomass paste 2) permeate outflow		Active	1.0	System Level (L1)	Low	System of interest	Inspection				-		Yes
14	CONST-PHY-03	Constraint	Physical	The extraction unit shall allow for the removal of cake buildup	Its TBD on the mechanism how to do this. As manual removal will violate axiometry	Active	1.0	System Level (L1)	Critical	AD01	Test		UT-2		PASS		No
15	CONST-PROD-01	Constraint	Production	The volume of the active PBR shall be at least 50L	Its expected that an 50+L reactor can generate enough biomass with a nominal growth curve, to allow for 5G of harvesting	Active	1.0	System Level (L1)	Critical	Constraint	Analysis				-		Yes
16	CONST-PROD-02	Constraint	Production	The jg (support structure) shall be constructed from stainless steel	Steel typically used in food-grade equipment is assumed to be the baseline	Active	2.0	System Level (L1)	Normal	Context - Food	Review				-		Yes
17	FUN-PERF-01	Functional	Functional/Performance	System shall separate cultivation broth to solid and liquid fraction	GENERAL requirement	Active	2.0	System Level (L1)	Normal	Context - Lifecycle	Review				-		No
18	FUN-PERF-02	Functional	Functional/Performance	Arthrosphaera platensis strain PCC6005		Active	1.0	System Level (L1)	Low	Melissa Needs	Analysis				-		No
19	FUN-PERF-03	Functional	Functional/Performance	The system shall keep the integrity of the cells at 90% (system inlet) and avoid cell lysis		Active	1.0	System Level (L1)	Low	Melissa Needs	Analysis				-		Yes
20	FUN-CTRL-01	Functional	Control	The target concentration factor shall be 10x or higher	Calculation shall be used to determine concentration factor	Active	2.0	System Level (L1)	Low	AD01	Analysis				-		No
21	FUN-PERF-04	Functional	Functional/Performance	End to end system performance shall be measured in weight percent	This shall be recorder for each diiferent medium flow in operation and in tandem. Min yield in static state: 80%	Active	1.0	System Level (L1)	Critical	ALISSE - Mass	Test		PT-3		-		No
22	FUN-CTRL-02	Functional	Control	There shall be at minimum two independently controllable streams: 1) biomass recycle stream 2) liquid media input stream	ie. each system shall not be dependant on each other	Active	2.0	System Level (L1)	Low	Context - Lifecycle	Inspection				-		Yes
23	FUN-PERF-05	Functional	Functional/Performance	It shall be TBD, if the system requires vibrational actuation for the purpose of continuous use. If the system does require it to meet performance needs, then the vibrational capability of the extraction shall be comparable	ie the unit's vibration can be turned on and off	Active	1.0	System Level (L1)	Normal		Test		QT-3		PASS		No
24	FUN-CTRL-03	Functional	Control	The maximum flow across the extraction unit shall be minimum TBC and Maximum TBC		Active	1.0	System Level (L1)	Normal	System of interest	Test		QT-1		PASS		No
25	FUN-CTRL-04	Functional	Control	The SW framework shall be COTS, no feature coding is expected	Laborious a baseline, alternative RedLion industrial SW	Active	1.0	System Level (L1)	Normal	Software Section	Inspection				-		No
26	FUN-PERF-06	Functional	Functional/Performance	The fluid medium in transfer pipes shall allow for the following flow rate: 100 mL/min	Expected: Min: 2 mL/min Max: 500 mL/min	Active	2.0	Sub-system (L2)	Normal	??	Test		QT-1		PASS		Yes
27	FUN-PERF-07	Functional	Functional/Performance	The fluid medium in MF/UF recirculation shall allow for the following flow rate: 25 L/min	Expected: Min: 5 L/min Max: 50 L/min	Active	2.0	Sub-system (L2)	Normal	??	Test		QT-1		PASS		Yes
28	INT-FUN-01	Interface	Functional Interface	The SW shall allow of semi-automatic / automatic control of the system, and prevent unsafe operation	Alarms are expected to be visible/audible in the GUI	Active	1.0	System Level (L1)	Normal	ALISSE - Crew	Test		QT-3		PASS		No
29	INT-PHY-01	Interface	Physical Interface	The fluid medium shall not leak unless explicitly desired by the system		Active	1.0	System Level (L1)	Normal	ALISSE - RAMS	Test		QT-1		PASS		Yes
30	INT-PHY-02	Interface	Physical Interface	Liquid flow connection should be designed from stainless piping with soft edges, or from silicone hoses		Active	1.0	System Level (L1)	Normal	Context - Food	Review				-		Yes
31	INT-PHY-03	Interface	Physical Interface	Recirculation and transfer tanks should be designed from stainless steel or glass, with further possibility to change the shape	PP/PE bags can be foreseen in the future to comply with zero-waste. Steel typically used in food-grade equipment is assumed to be the baseline	Active	1.0	System Level (L1)	Normal	??	Inspection				-		Yes
32	OP-RESS-01	Operational	Resources	The entire PBR system, including jg, shall be weighed at 1) dry mass and 2) wet mass during operation	It's assumed the entire system shall be mounted on a jg, which itself can be weighed in both circumstances	Active	1.0	System Level (L1)	Normal	ALISSE - Mass	Inspection				-		Yes
33	OPS-MODE-01	Operational	Mode & Scenarios	System shall be designed in continuous mode	Assumed for this bioreactor type / harvesting unit	Active	1.0	System Level (L1)	Low	Melissa Needs	Inspection				-		Yes
34	OP-ENV-01	Operational	Operational Environment	The cultivation temperature shall be 30°C +/- 2	updated	Active	3.0	System Level (L1)	Low	Melissa Needs	Test		UT-1		PASS		No
35	OP-RESS-02	Operational	Resources	System shall be design to allow external buffer addition (return tank)		Active	2.0	System Level (L1)	Low	Melissa Needs	Review				-		No
36	OP-RESS-03	Operational	Resources	The mass balance of each production run shall be recorded	This assumes the system is a LSS per TNQ, and shall use the ALISSE model as a reference	Active	1.0	System Level (L1)	Normal	ALISSE - Mass	Analysis				-		Yes
37	OP-DOC-00	Operational	Documentation	All Qualification Tests shall be accompanied by data logs for each run	From the control SW	Active	1.0	System Level (L1)	Normal	Derived	Inspection				-		No
38	OP-DOC-01	Operational	Documentation	All Qualification Tests shall be accompanied by input (bacteria culture) source reports/note	Additional reports need to be generated, only that the final qualification tests shall not have contamination present	Active	2.0	System Level (L1)	Normal	Derived	Inspection				-		No
39	OPS-RAMS-01	Operational	RAMS	The system shall be ROHS compliant	No hazardous wiring should be present on HW configs	Active	1.0	System Level (L1)	Low	ALISSE - RAMS	Inspection				-		No
40	OPS-HUMAN-01	Operational	Human factors & ergonomics	Failure on any part of the system shall not endanger the operator in any way	In tandem with requirement below, a DFMEA shall be continuously updated	Active	1.0	System Level (L1)	Normal	ALISSE - Crew	Review				-		No

Objective 1 - Harvesting skid design

From existing processes and designs, the objective of this project shall be to **create the various technical parts of a recovery line** for processing of Limnospira biomass.


Objective 1 - Mechanical design - solid/liquid loop

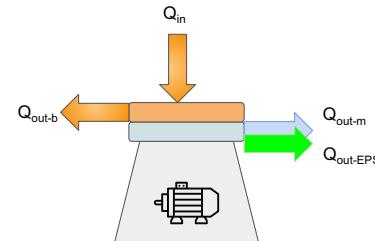

→ Mains Power
230V ~
but can be optimized to LOW voltage

← Sensor Data
I2C or 0-20mA bus
-Temperature
-Rotation
-Vacuum (if any)

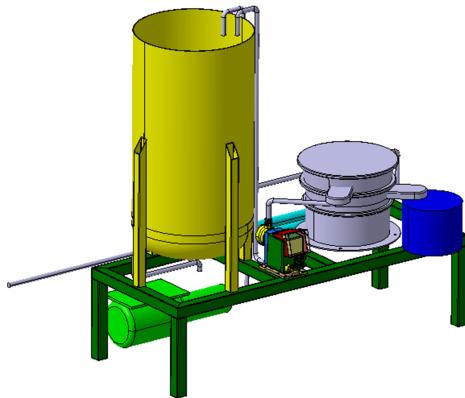
Rotary filter

← Software Control
-Rotation
-Inlet pump flow
-Vacuum I/O (if applicable)
-sieve discharge (if applicable)

Vibrating filter

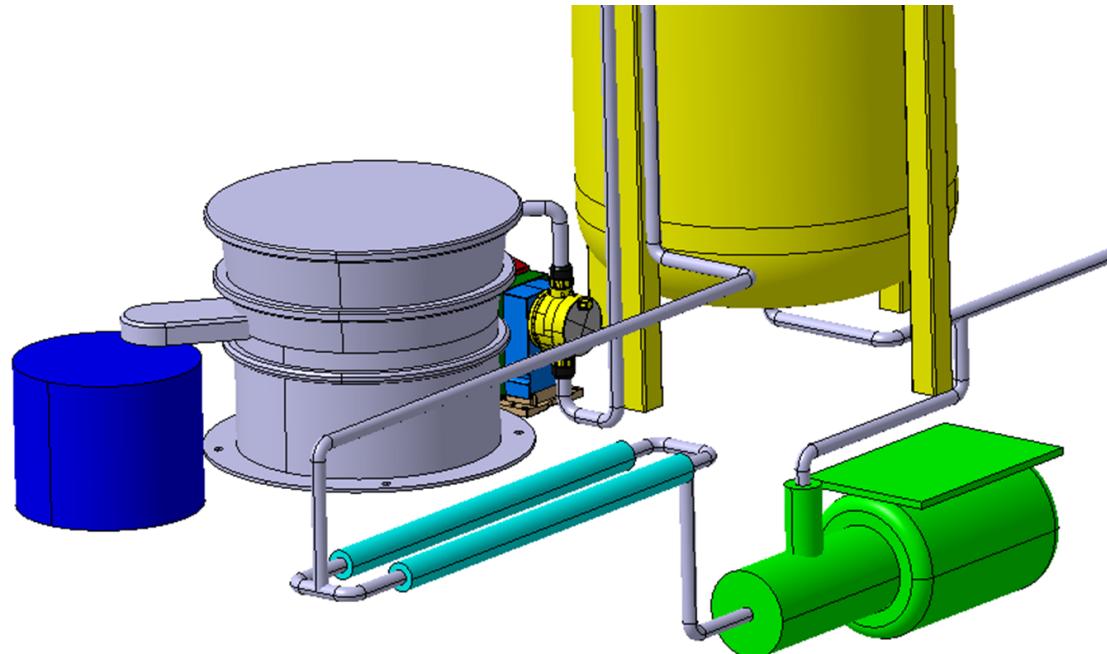

→ Mains Power
400V ~
but can be optimized to 230V ~
or to LOW voltage

← Sensor Data
I2C or 0-20mA bus
-Temperature

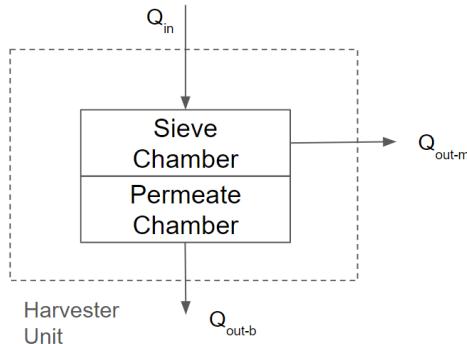

↔ Software Control
-Vibration
-Inlet pump flow

Core harvesting technology

Biomass separation unit design, testing and future steps

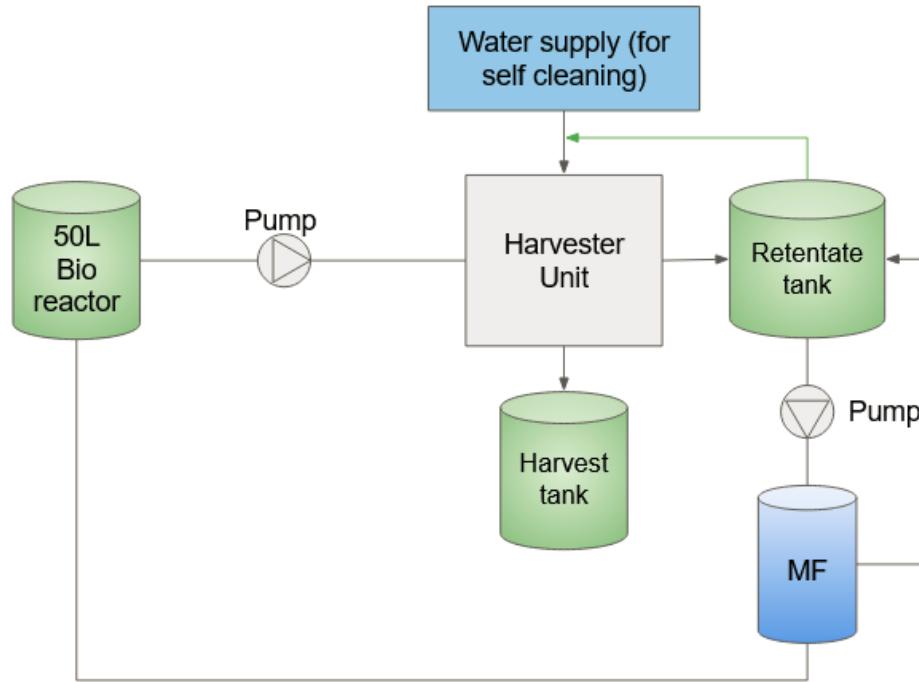


Objective 1 - Mechanical design

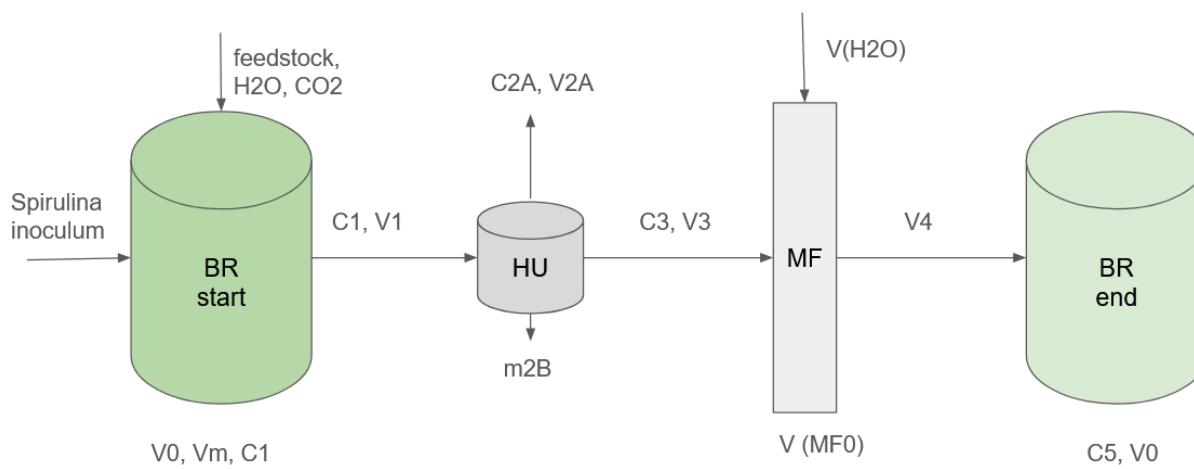


Mechanical design ver.1

Designed as continuous harvesting technology using vibration filtration screen, ceramic filters and pumps based on solid construction rig from Stainless Steel



Objective 1 - Fluid design



Fluid interfaces

Designed as continuous harvesting technology using vibration filtration screen, ceramic filters and pumps based on solid construction rig from Stainless Steel

Fluid design - Harvesting Mass Balance

BR	bioreactor	m2B	spirulina paste, that stays on the sieve
HU	harvesting unit	C3, V3	filtrate stream
MF	microfiltration	V(H2O)	deionised H2O, that needs to be added to cover
V0	bioreactor volume	V (MF0)	dead volume of microfiltration and product stream V2A
Vm	media volume left in the bioreactor for the next cycle	V4	dead volume of microfiltration
C1	concentration of spirulina calculated from OD	C5	stream of purified media
V1	harvested volume		concentration of spirulina after harvesting cycle
C2A, V2A	harvested product		

Some sample calculations...

$$\begin{aligned}V0 &= V1 + Vm \\C1*V1 &= C2A*V2A + m2B + C3*V3 \\m \text{ (wet product)} &= C2A*V2A + m2B \\V1 &= V4 \\V4 &= V1 - V2A + V(H2O) - V(MF0) \\C5*V0 &= C1*Vm\end{aligned}$$

100 mL bioreactor vessel, batch filtration

$$V0 = 100 \text{ mL}$$

$$Vm = 0 \text{ mL}$$

$$C1 = 2.11 \text{ g/L}$$

$$m2B = 5.3 \text{ g}$$

$$C2A = 0 \text{ g/L}$$

$$V2A = 0 \text{ L}$$

$$\begin{aligned}V1 &= V0 - Vm = 100 \text{ mL} - 0 \text{ mL} = \\100 \text{ mL}\end{aligned}$$

$$m \text{ (wet product)} = C2A*V2A +$$

$$m2B = 0 + 5.3 \text{ g} = 5.3 \text{ g}$$

$$m \text{ (dry product)} = 10\% * 5.3 \text{ g/L} = \\0.53 \text{ g}$$

10L PBR, semi-continuous filtration

$$V0 = 10 \text{ L}$$

$$Vm = 1 \text{ L}$$

$$C1 = 1.62 \text{ g/L}$$

$$m2B = 45.2 \text{ g}$$

$$C2A = 21.5 \text{ g/L}$$

$$V2A = 0.02 \text{ L}$$

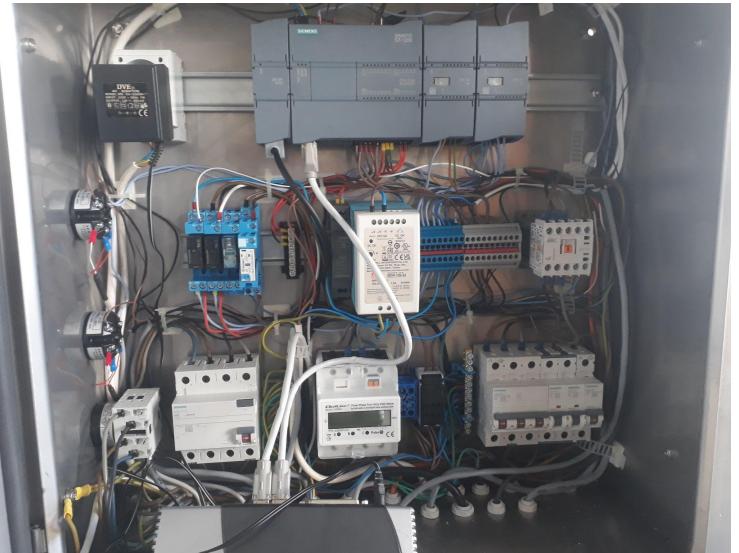
$$\begin{aligned}V1 &= V0 - Vm = 10 \text{ L} - 1 \text{ L} = 9 \text{ L} \\m \text{ (wet product)} &= C2A*V2A + m2B \\&= 21.5 \text{ g/L} * 0.02 \text{ L} + 45.2 \text{ g} = 45.63 \text{ g} \\m \text{ (dry product)} &= 10\% * 45.63 \text{ g/L} = 4.56 \text{ g} \\C5 = (C1*Vm) / V0 &= (1.62 \text{ g/L} * 1 \text{ L}) / 10 \text{ L} = \\0.162 \text{ g/L}\end{aligned}$$

45L PBR, semi-continuous filtration

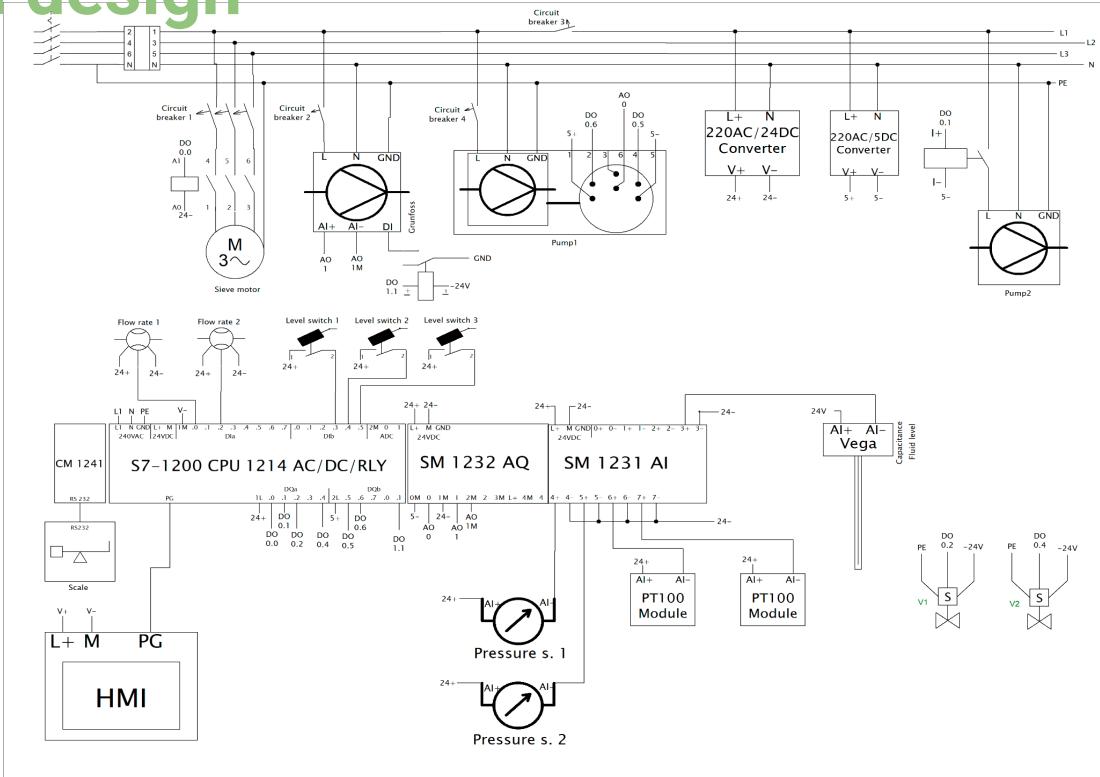
$$V0 = 45 \text{ L}$$

$$Vm = 7 \text{ L}$$

$$C1 = 1.05 \text{ g/L}$$

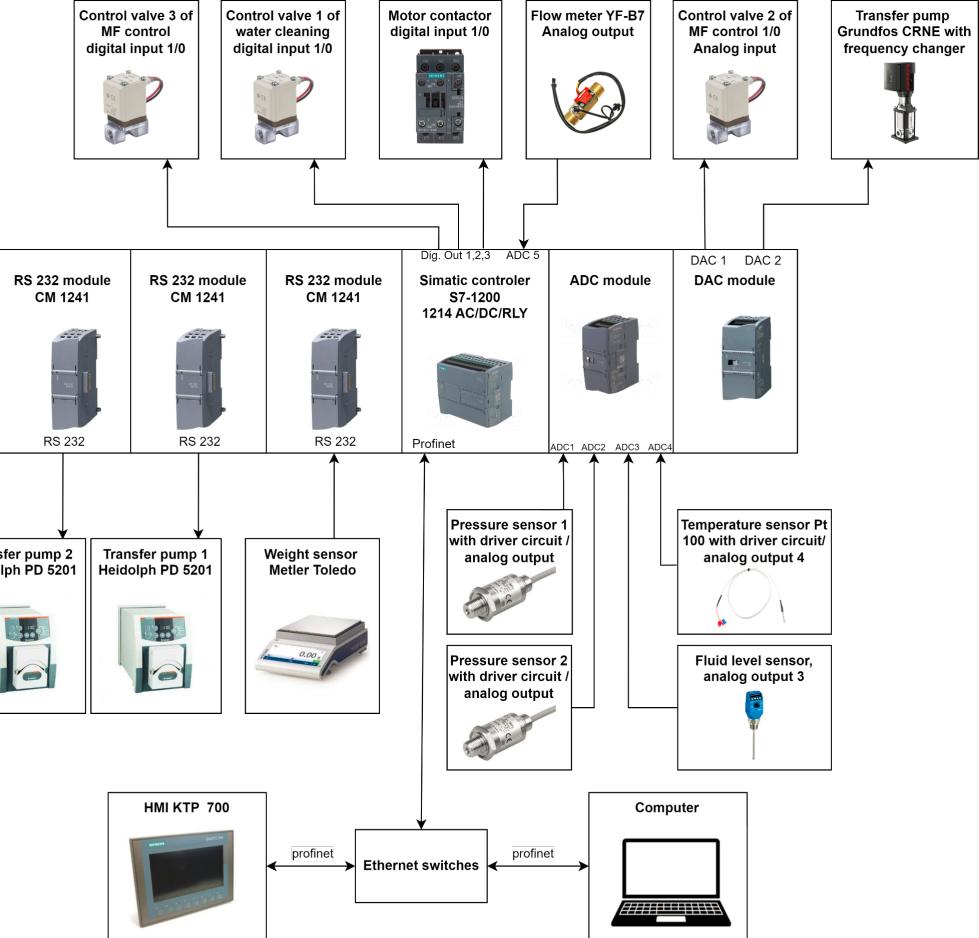

$$m2B = 200 \text{ g}$$

$$C2A = 20.4 \text{ g/L}$$


$$V2A = 0.12 \text{ L}$$

$$\begin{aligned}V1 &= V0 - Vm = 45 \text{ L} - 7 \text{ L} = 38 \text{ L} \\m \text{ (wet product)} &= C2A*V2A + m2B \\&= 20.4 \text{ g/L} * 0.12 \text{ L} + 200 \text{ g} = 202.4 \text{ g} \\m \text{ (dry product)} &= 10\% * 202.4 \text{ g/L} = 20.24 \text{ g} \\C5 = (C1*Vm) / V0 &= (1.05 \text{ g/L} * 7 \text{ L}) / 45 \text{ L} = \\0.16 \text{ g/L}\end{aligned}$$

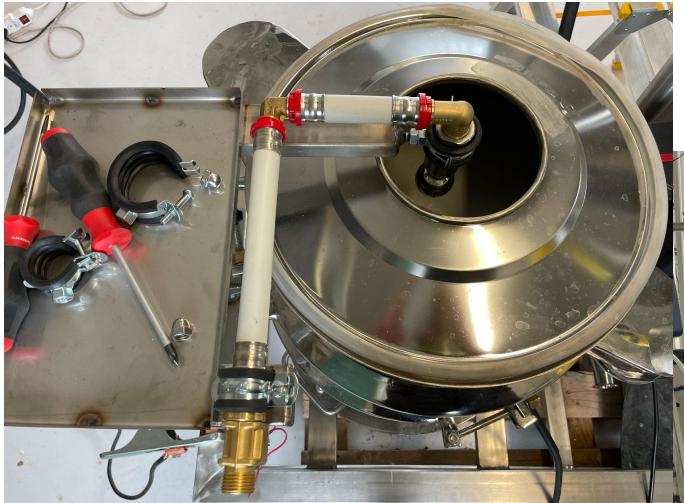
Objective 1 - Electrical design


Wiring - Feeder unit

Skid wiring electrical diagram

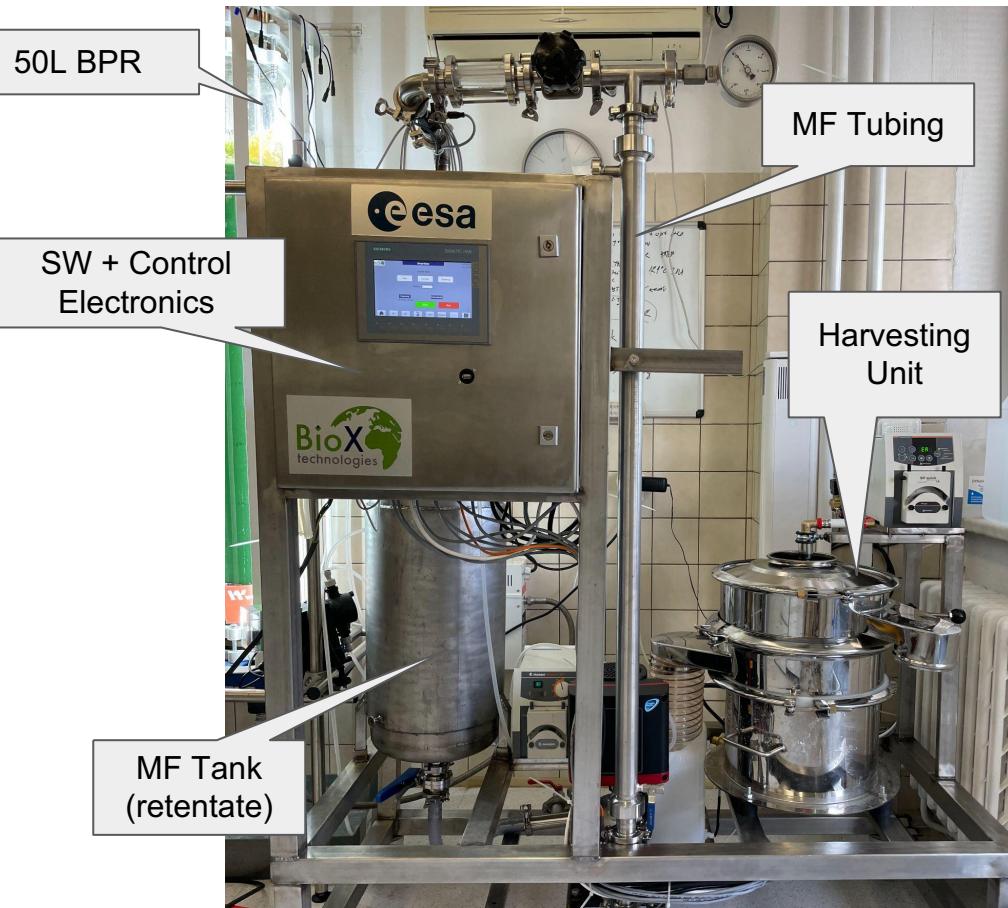
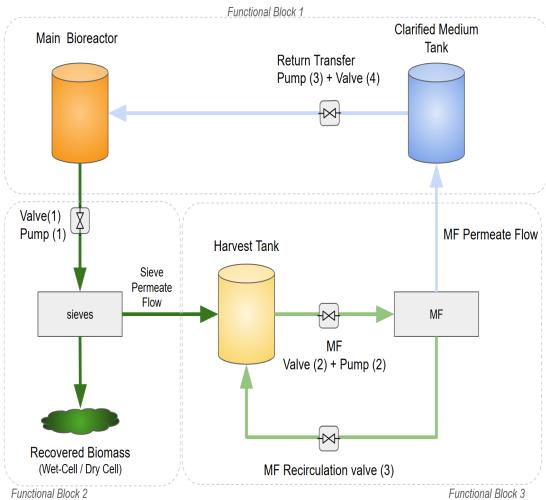
Objective 1 - electrical design & automation

*Feeder system control
automation architecture, with
HMI, interfaces and sensors*



List of sensors and actuators and power consumption

#	Component Name	Purpose	Interface	Consumption per Spec Sheet [W]	Recorded Power Consumption (Test)	Unit	Operational Range	Tolerance/Resolution	Accuracy
1	Computer	Used to connect to the master control unit S7-1200. Only to be used for programming and changing system setup, not a permanent unit	Ethernet Cable			N/A - communications	N/A	N/A	N/A
2	KTP 700	HMI of the system. It is used for monitoring data, and controlling the system.	Ethernet Cable	5.5		N/A - communications	N/A	N/A	N/A
3	Weight sensor	Measuring the mass of the Biopasta. Based on this information, warning is send to HMI to empty the buffer tank	RS 232	27		Grams	0-250	0.1g	
4	Transfer pump	Transporting the fluid from reactor to the feeder.	RS 232	78		%	0-100	N/A	N/A
5	Control valve of water cleaning	Valve for water supply for purpose of cleaning	Digital input 1/0	18		%	0-100	N/A	N/A
6	Motor contactor	Turning on and off 3 phase motor	Digital input 1/0	6		%	0-100	N/A	N/A
7	Temperature sensor	Measuring temperature of incoming fluid into the feeder, before it drops into the sieve	Analog output	0.5		°C	0-100°C	0.1 °C	0.1°C
8	Pressure sensor	measuring fluid pressure of incoming fluid, AFTER the transfer pump. It checks operation, or if pipeline is damaged somewhere	Analog output	0.5		MPa	0-3	0.03MPa	1% F.C
9	ADC module	For converting analog signals into the digital	Directly connected to S7-1200			N/A - power equipment			
10	RS 232 module	Communication with devices via RS 232	Directly connected to S7-1200	1.1		N/A - communications			
11	Controler S7-1200	main microcontroller unit	Ethernet	14		N/A - communications			
TOTAL				150.6					



Consumers	Design Rate (W)	Duration (h)	Test Reference	Estimated power Consumption (kWh)
Sensors and Actuator	150.6	360	15 days for PT-1	54.216
Vibrational Motor	500	2.5 (estimated)	10 mins for PT-1	1.25

Assembly of Feeder unit

Objective 1

From existing processes and designs, the objective of this project shall be to **create the various technical parts of a recovery line** for processing of Limnospira biomass.

GUI Main Interface

Overview 12/31/2000 10:59:39 AM

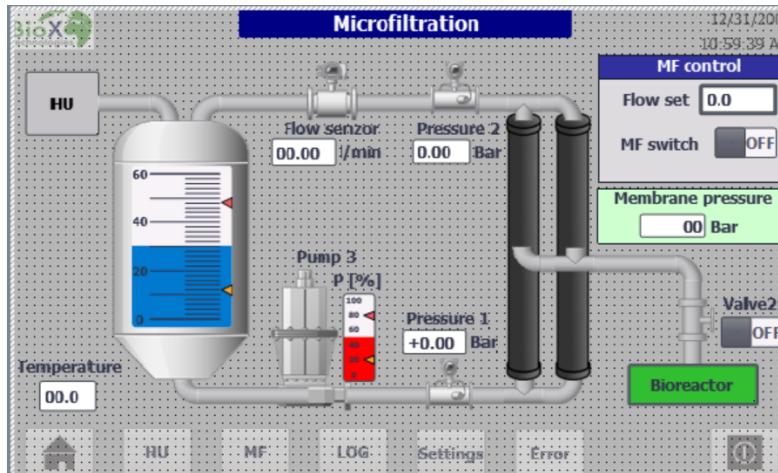
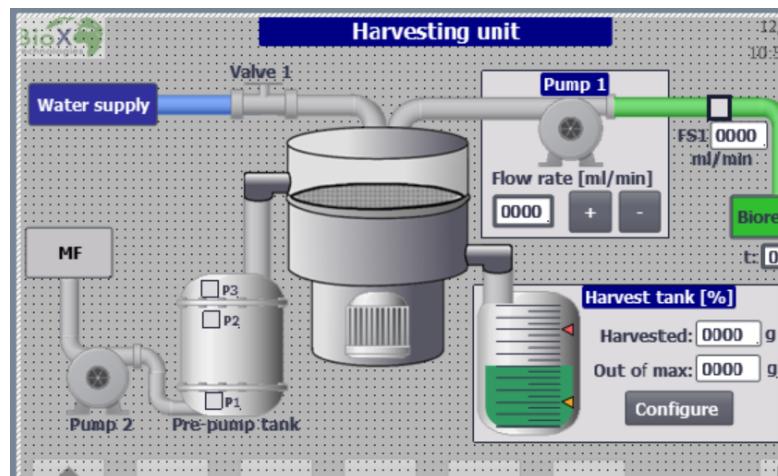
Cleaning configuration

Cleaning interval: Off

Cleaning duration: 5 sec

Cleaning inactive

Cleaning **acknowledge tank**



Process control

Controlled volume: OFF
+00.000 out of +0000000

Current Mode: Idle

Start **Stop**

Navigation: HU MF LOG Settings Error

Mass balance of the components

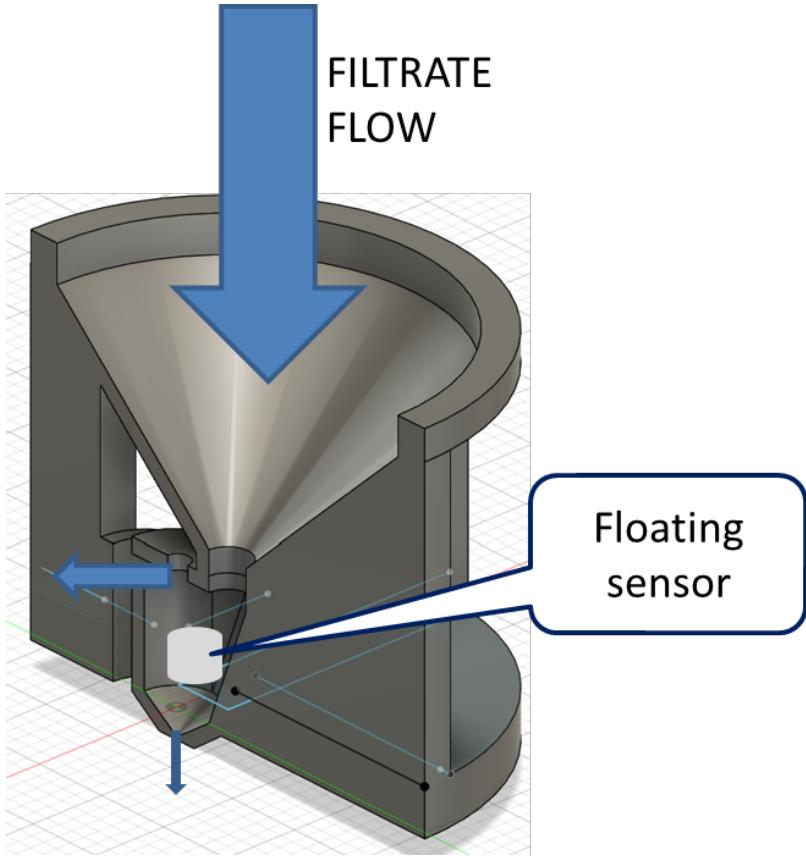
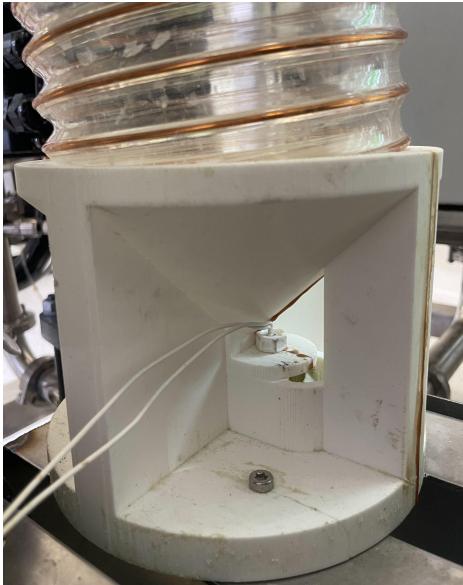

#	Component Name	Purpose	Interface	per Spec Sheet (w)	component (g)	QA Status	Spec Sheet A
1	Computer	Used to connect to the master control unit S7-1200. Only to be used for programming and changing system setup, not a permanent unit	Ethernet Cable			Accepted	Not Needed
2	KTP 700	HMI of the system. It is used for monitoring data, and controlling the system.	Ethernet Cable	5.5	780	Accepted	Available
3	Weight sensor	Measuring the mass of the Bio Pasta. Based on this information, warning is send to HMI to empty the buffer tank	RS 232	27	5900	Accepted	not available
4	Transfer pump	Transporting the fluid from reactor to the feeder.	RS 232	78	8300	Accepted	Available (max)
5	Control valve of water cleaning	Valve for water supply for purpose of cleaning	Digital input 1/0	18	1000	In Procurement	
6	Motor contactor	Turning on and off 3 phase motor	Digital input 1/0	6	240	In Procurement	
7	Temperature sensor	Measuring temperature of incoming fluid into the feeder, before it drops into the sieve	Analog output	0.5	50	In Procurement	
8	Pressure sensor	measuring fluid pressure of incoming fluid, AFTER the transfer pump. It checks operation, or if pipeline is damaged somewhere	Analog output	0.5	100	In Procurement	
9	ADC module	For converting analog signals into the digital	Directly connected to S7-1200	0.5	35	In Procurement	Available
10	RS 232 module	Communication with devices via RS 232	Directly connected to S7-1200	1.1	150	In Procurement	Available
11	Controler S7-1200	main microcontroller unit	Ethernet	14	455	Accepted	Available
11	Various Wiring	TBD amount of basic wiring		N/A	2000	Accepted	
12	SIEVES MOTOR	Drive the sieve vibration		500	See next sheet	Per sieve system	
		Total basic power consumption		651.1	Watts		
		Total Weight - control system			19010	grams	
		Sieves machine			45130	grams	
		TOTAL SYSTEM			64140	grams	

Objective 2 - recycling of liquid medium

The liquid medium stream will be removing biomass and recycled back the cultivation medium and to the originating bioreactor.

Liquid medium flow points

1. From Bioreactor
2. Goes via the vibrating science
3. Enters Pre-pump tank
4. Enters Retentate Tank
5. Is processed via MF filtration
6. Is returned back to the PBR

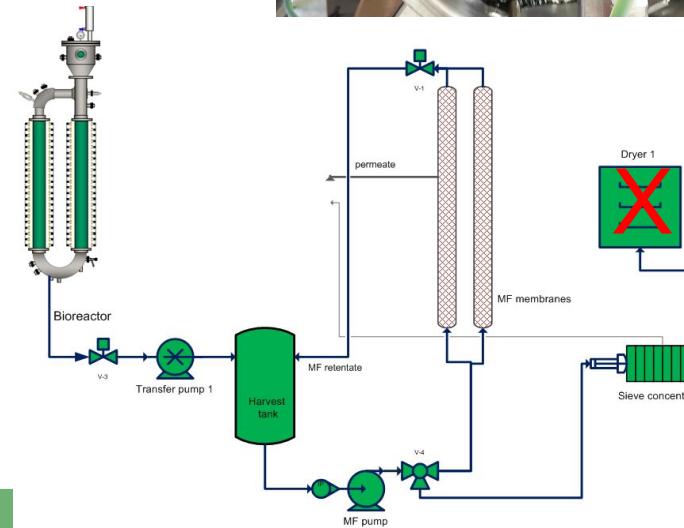



Anti-clogging device

Filtration detecting funnel was added to watch the harvesting unit clogging

1. Filtrating funnel
2. Floating sensor

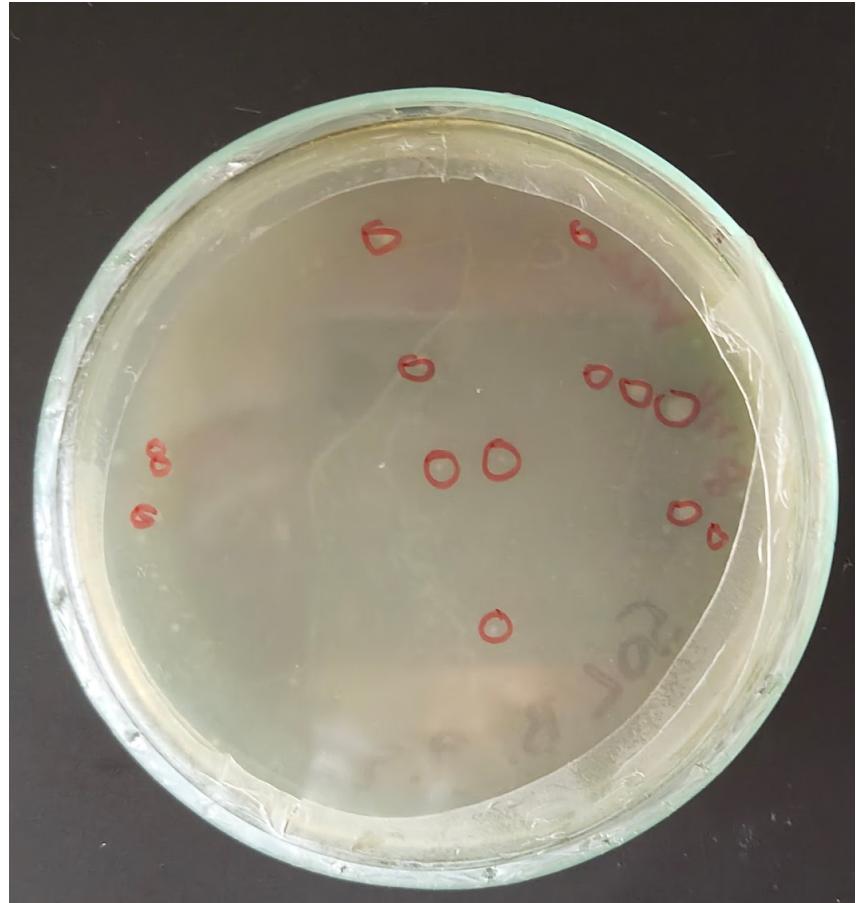
Flow is indicated by blue arrows


Objective 3 - biomass concentration

Biomass will be further concentrated in two steps on microfilters and sieves and dried in consequent steps

- The final construction contains only one sieve to concentrate the biomass and vacuum dryer was retracted during the project timeline.
- Concentration of biomass on vibration sieve shows 3 critical points: Transport of the pasta to the exit along the sieve, Dead volume of the sieve, Large variability in paste consistency and thus resultant bio-product amounts

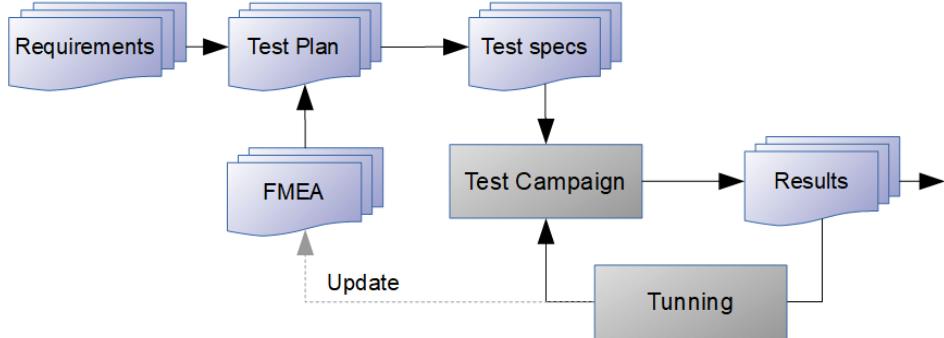
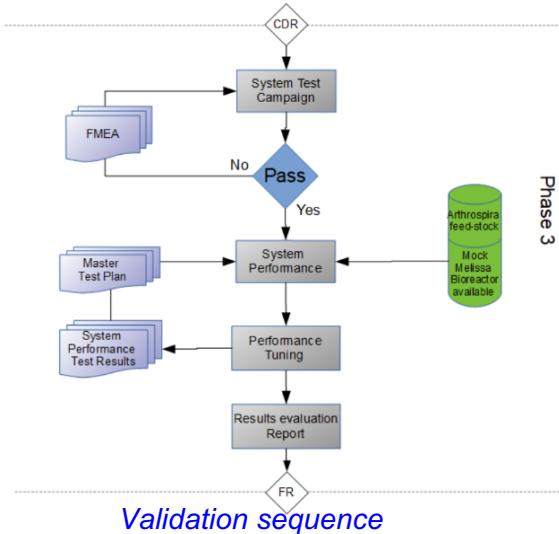
NO FINAL DRY


- Vacuum was de-prioritized during the project as a requirement/objective, but was performed regardless in conventional drying ovens

Objective 4 - axenicity

Sterility of the reverse liquid medium loop must be kept, this is a critical system performance constraint. Contamination must be avoided. Operations of the device should be fully tested and automated, at least at the local level.

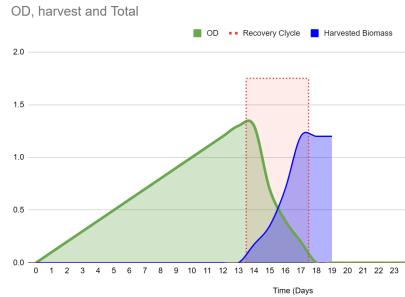
- After several cycles, contamination cannot be fully avoided, but because of the microfiltration, it is significantly reduced
- Microfiltration membranes cannot be sterilised in our conditions (they are too big for lab autoclave), we disinfected them between the runs with sodium hypochlorite (NaClO)
- Axenicity was sampled in bioreactor between harvesting cycles



Harvesting and contamination

We worked with two different Spirulina strains:

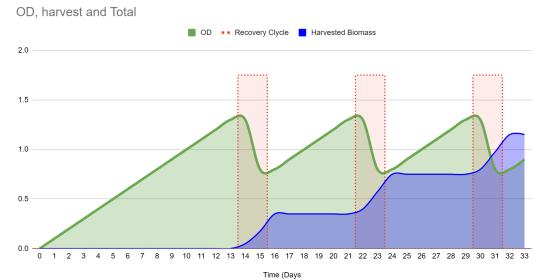
- Strain PCC8005 (3AI) is an axenic culture, the highest level of sterility was kept in our conditions before and during the process.
- Strain HA is not an axenic culture, so while still providing some level of sterilisation before cultivation, we did not test axenicity during the process.

Run	Before harvest	After 1st harvest	After 2st harvest
PT-3 Strain 3AI	Axenic	Not axenic, 28 CFU / ML	Not axenic 110 CFU / ML
PT-2 Strain HA	N/A	N/A	N/A
PT-1 Strain HA	N/A	N/A	N/A


Test campaign: Use Cases

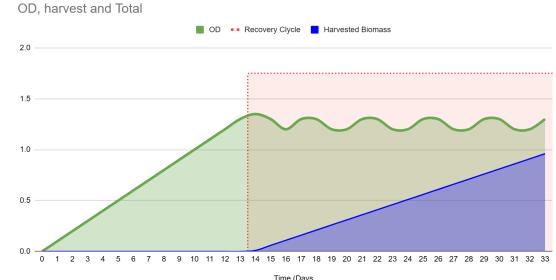
Original test plan

ID	Run #	Total Days	Cumulative Total Yield (Dry Yield grams)	Total Yield (Wet Yield grams)	Total Power Consumption (W)	Calculated Average Daily Production (g)	Type	Notes
PT-1	1	10	12.6	1900	-	190	Wet	~1.3g to 1.9g dry per day, or 0.66% dry w/w
PT-2	1	24	11.1	-	-	0.46	Dry	~0.5 g dry per day
PT-3	1	20.5	23.5	-	0.8 kWh	1.15	Dry	Power for 4 harvesting runs.


Use Cases - Mission Level

Use Case 1 - "Bang-bang harvesting"

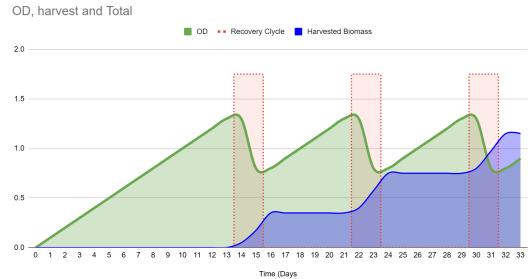
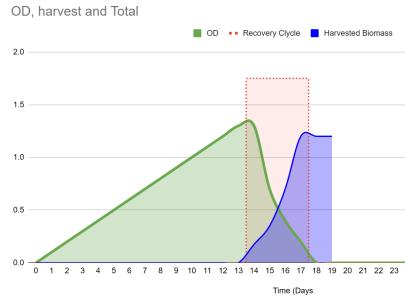
The core aspect of this UC/mode of operation is a single growth cycle, followed by a complete harvesting of the bioreactor.


Performance Test 1 (PT1)

Use Case 2 - "Pulsed harvesting"

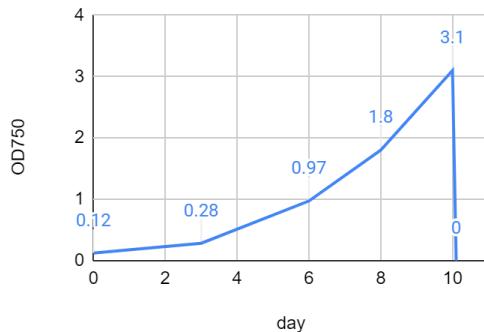
The core aspect of this UC/mode of operation is a multi growth cycle. Multi-stage harvesting. After the initial cultivation phase, multiple harvest cycles are taken. The main purpose of this UC is to aim for continuous bio-product products, and subsequent harvesting.

Performance Test 2 (PT2)



Use Case 3 - "Continuous harvesting"

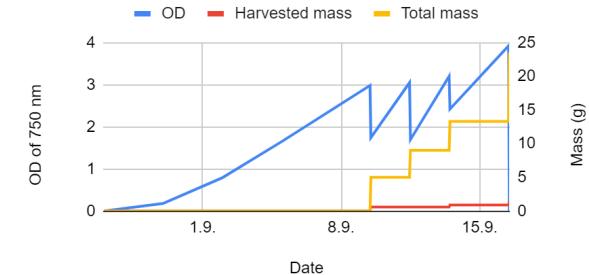
Continuous, "steady state siphon" cycle timing concept

Not Tested

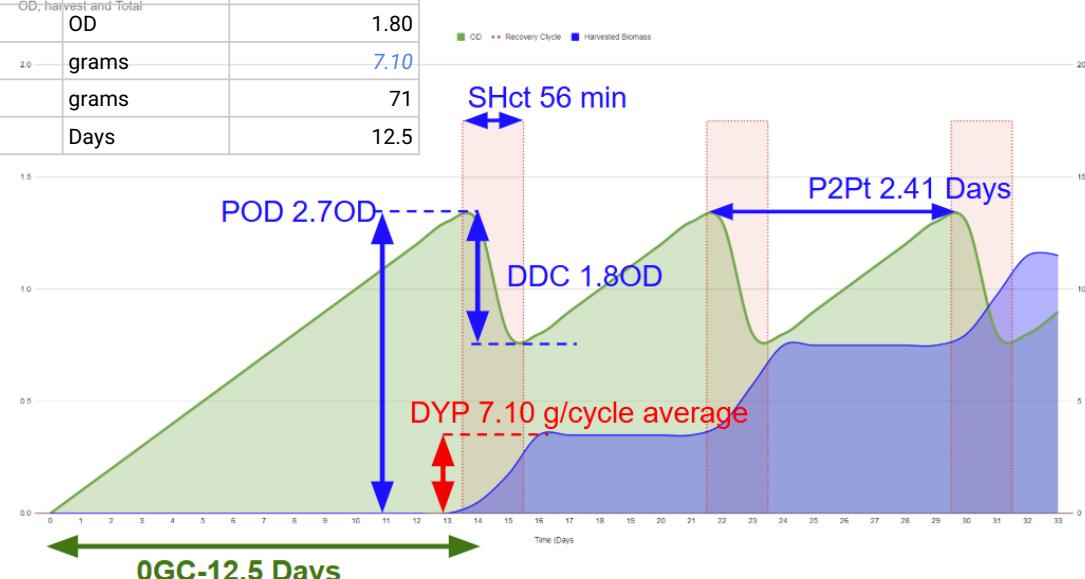

ID	Run #	Total Days	Cumulative Total Yield (Dry Yield grams)	Total Yield (Wet Yield grams)	Total Power Consumption (W)	Calculated Average Daily Production (g)	Type	Notes
PT-1	1	10	12.6	1900	-	190	Wet	~1.3g to 1.9g dry per day, or 0.66% dry w/w
PT-2	1	24	11.1	-	-	0.46	Dry	~0.5 g dry per day
PT-3	1	20.5	23.5	-	0.8 kWh	1.15	Dry	Power for 4 harvesting runs.

Use Cases - Mission Level

Actual results are below. In general the real world results were somewhat flaky (inconsistent), however matched the ideal Use Case OD curves as planned


PT-1 OD of the bioreactor

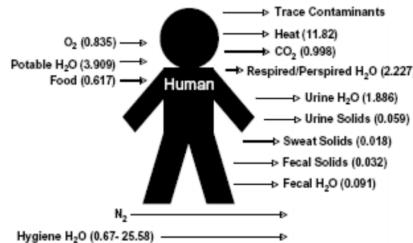
PT-2 R#1 Changes of OD during tests



PT-3 #1 Changes of OD and cumulative mass during tests

Use Cases - Average performance results

	Variable	Test Run	unit	Averages
1	POD	Peak OD before Harvest	OD	2.70
2	SHct	Single Harvest cycle time	Minutes	56.27
3	P2Pt	Peak to Peak time	Days	2.41
4	DDC	Delta Drop in Concentration	OD; harvest and Total OD	1.80
5	DYP	Dry Yield Potential	grams	7.10
6	WYP	Wet Yield Potential	grams	71
7	0GC	0-Growth Curve	Days	12.5

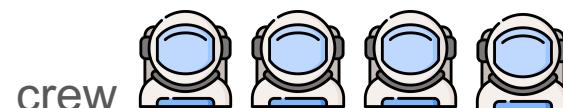


Use Cases -Variable Details

	Variable	Variable long name	unit	What is it	How is the value calculated
1	POD	Peak OD before Harvest	OD	The First measurement of OD in the bioreactor, prior to harvesting. In UC1, there is only 1 harvesting. In UC2, there are multiple harvest peaks, thus each peak is taken into account.	It is the AVERAGE of all of the THP's across all tests, ie $[(x) + (x+1) .. (x+n)] / \text{total \# of samples experiments}$
2	SHct	Single Harvest cycle time	Minutes	The amount of time needed to filter X liter of volume.	-Calculated by subtracting 2 timestamps from the data logs for each test run. -In the table above it's the AVERAGE across all experiments.
3	P2Pt	Peak to Peak time	Days	The amount of time between harvests.	Calculated by subtracting 2 timestamps from the data logs for each test run.
4	DDC	Delta Drop in Concentration	OD	The OD value of the PBR after a single harvesting action has been taken	It is the AVERAGE of all of the DDC's across all tests, ie $[(x) + (x+1) .. (x+n)] / \text{total \# of samples experiments}$
5	DYP	Dry Yield Potential	grams	Measured after biomass is dried in heat ovens. Measure during each sampling test for each test run.	It is the AVERAGE of all of the DDC's across all tests
6	WYP	Wet Yield Potential	grams	The raw harvested biomass, directly weighted in the harvest tank plus the mounts left on the sieve	Raw amount of biomass. Measure during each sampling test.
7	0GC	0-Growth Curve	Days	The amount of time from start of experiment run to the 1st harvesting cycle. Calculated by subtracting 2 timestamps from the data logs In other words the amount of time needed to start production.	Calculated by subtracting 2 timestamps from the data logs for each test run. Only recorded once per test.

Reference Mission - End to End performance Targets

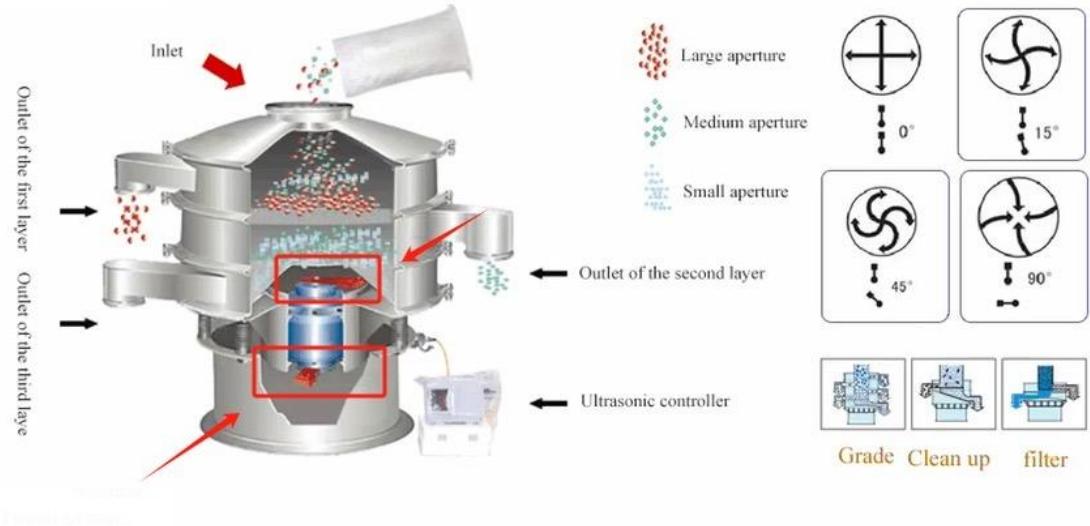
Requirement Target in TN88	Standard value (kcal per day) For crew of 4	Appx Reference Value of 333 kcals / 100g In Spirulina	Updated Target Dry Product / Day	Updated Target WetProduct / Day
5% metabolic requirement	566	1.7	170 g	1,700 g
40% metabolic requirement	4,528	13.60	1360 g	13,600 g


Thus for the 1st initial target, to supply 5% of food nutritional energy for a crew of 4 we would need to produce **170 g / day**, or **42.5 g/d per person**

As a sanity check, recommended daily doses of spirulina are cited as **5 - 10 grams per day** ([source 1](#), [source 2](#))

However it should be noted that spirulina is generally considered a food supplement, not a main source of food.

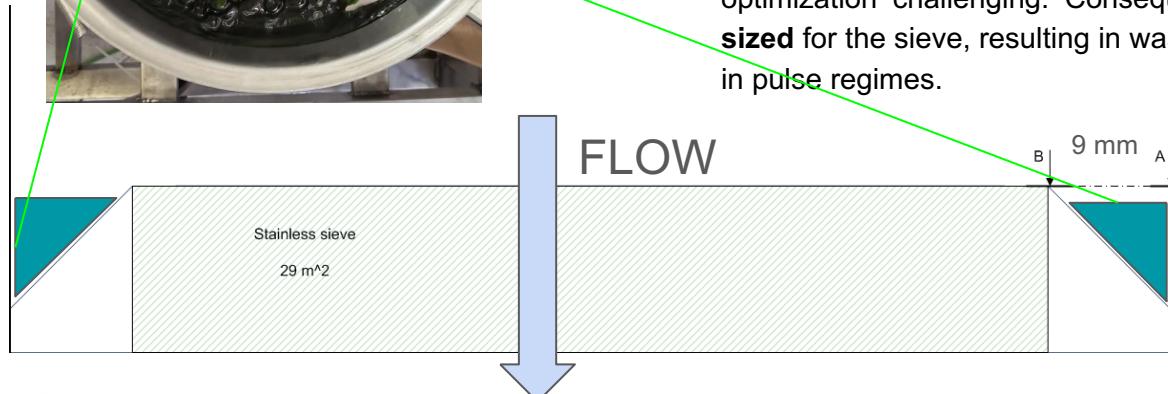
Nonetheless, below are the resulting biomass yields (per harvest) produced during the Validation Test Campaign:


	Average
Dry Yield Potential - continuous	3.5
Dry Yield Potential - bang harvest	18.2

Critical Points

Transport of the pasta to the exit along the sieve

- The sieve's position and angle affect pasta movement, ideally directing it toward the harvesting exit.
- Despite multiple adjustments, **the impact of position is less significant than expected**, leading to spirulina accumulating on one side of the sieve, far from the exit.
- This behavior is likely due to stronger forces, such as vibrational bias from the motor and structural resonance, which outweigh gravitational effects.



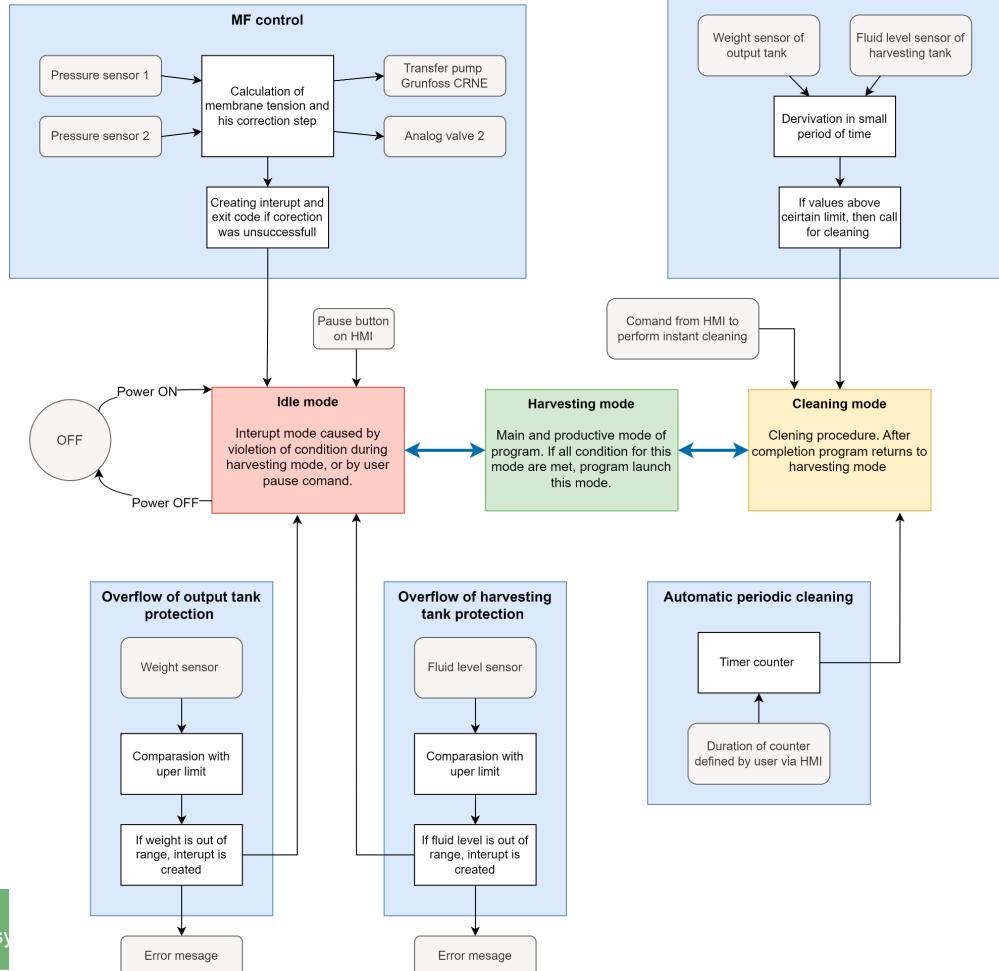
Critical Points

Dead volume of the sieve

- The dead volume problem consists of two parts: **the gap between the sieve and the wall**, and **the volume of blobs** that form directly on the sieve.
- The gap, which was unsuccessfully addressed with a metal ring, leads to pasta accumulation and complicates separation due to vibrational forces.
- The blobs must reach a certain size to move to the exit, making optimization challenging. Consequently, **the bioreactor is improperly sized** for the sieve, resulting in wasted biomass in each cycle, particularly in pulse regimes.

Critical Points

Large variability in paste consistency and thus resultant bio-product amounts


- The unstable performance of the sieve and unpredictable biomass transport lead to **significant variability in paste quality regarding water content**, making pure mass measurements of the bioproduct misleading.
- While paste consistency can be adjusted by changing the flow rate of the harvested spirulina media, a low flow rate increases dead volume, reducing the bioproduct yield.
- The variability of filtration performance, thus paste quality is mainly affected by the microbial cultivation process. I.e. prolonging cultivation, contamination, other unknown factors.

SW operation mode

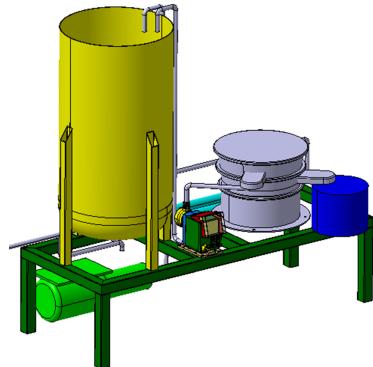
Feeder operation at BioX labs

FMEA

3	Medium Stream	Transfer pump not working	No medium can be used as an input to the process	Fluid	5	Pump worn out	2	Process can not continue - must be stopped	visually, pump error at the control panel	1	10	preventive maintenance
4	Medium stream	High pressure at MF membrane	reduced microfiltration ability and yield	Fluid	5	MF membrane is clogged	2	MF process will be terminated soon	pressure transducer - digitally	1	10	optimized process
5	Medium stream	High pressure at UF membrane	reduced ultrafiltration ability and yield	Fluid	5	UF membrane is clogged	2	UF process will be terminated soon	pressure transducer - digitally	1	10	optimize process
6	Medium stream	Spirulina cells in MF/UF permeate	Contaminated medium flow from biomass, disintegration of UF membrane	Fluid	5	MF membrane is physically broken	1	Further UF system will be clogged, process must be terminated	visually - microscope	2	10	better handling with membrane
7	Poly. stream	Concentration factor too low in UF retentate loop	Polysaccharides has low concentration for the next step drying operation	Fluid	1	Low amount of polysaccharides in the bioreactor, small amount has been separated on UF	2	UF process needs to continue	Lab analysis method	3	6	optimized medium processing
8	Biomass stream	Sieve concentrator does not separate effectively	Biomass has high residual water	Fluid	5	sieves concentration process is not robust	2	Loosing water/medium from the loop	Biomass concentration at the output from sieve concentrator	3	30	optimize the sieve concentrator process
9	Software	Data log is not available	Test run or validation run is invalidated	Software	2	Incorrect setup at start of execution	2	Loss of valuable data, loss of system-level modelling	Visual or random spot inspection	3	12	Checklist
10	Software	Software not able to drive key component	Degradation of overall system performance	Software	7	Sensor or interface failure	4	Loss of primary function	filtered biomass amounts do not correspond to analytical estimations	3	84	Integration test
11	Software	Software not able to drive secondary component	Pumps fail to operate at needed performance	Software	4	Device driver or low lever incompatibility	3	Flow through rate of various stages can be impacted.	Secondary flow meters, on-screen device feedback	3	36	Integration test
12	HW - general	Power loss	Loss of functionality of all main and secondary components (pumps)	Electrical	8	Various, typically out of control of lab conditions	2	Complete loss of system functionality, possibly stability	By user, data logger if possible	1	16	Backup power supply

SK6_19

MELISSA Feeder: Biomass Harvesting system
for food preparation


**TECHNICAL
DETAILS**

Conclusion and
Recommendations

Conclusion and Recommendations

Objectives	Results
From existing processes and designs, the objective of this project shall be to create the various technical parts of a recovery line for processing of Limnospira biomass.	This was accomplished, albeit with varying levels of difficulty.
The liquid medium stream will be removing biomass and recycled back the cultivation medium and to the originating bioreactor	Accomplished
Biomass will be further concentrated in two steps on microfilters and sieves and dried in consequent steps of vacuum drying.	This was altered during the process, in the final construction there is only one step of biomass concentration (vibration sieve) and the vacuum dryer has been cancelled
Sterility of the reverse liquid medium loop must be kept, this is a critical system performance constraint. Contamination must be avoided. Operations of the device should be fully tested and automated, at least at the local level.	After several cycles, contamination cannot be fully avoided, but due to the microfiltration, it is still significantly reduced. Operations of the device were fully tested and automated.

Biomass Harvesting system for food preparation

Capabilities	
Harvesting MAX rate	2.5 L / min or 3.6m ³ / day
Power MAX Consumption	650 W
Product Yield at Continuous Production / Day	3.5 g / day
Product Yield in Batch production mode	11.4 g / day
Internal Processing volume	83 L
Sieve porosity	5 µm to 200 µm
MW cutoff	100 nm to 2 kDa
Dead volume	Approx. 4000 ML
Size - dimensions	1400x700x1850MM (LxWxH)
Weight	150 kg

Future Work

1. Data Connectivity to bioreactor

Useful for end-to-end performance optimization. This includes mostly data TX between parameters such as fill level, temperatures, etc to better optimize the settings of the Harvesting Unit

1. Sweeper - Address critical point #2

The main expected of the sieve that needs to be improved (besides the scaling) is the mechanical removal of the captured biomass by a 'spatula like' automated rotating appendage

1. Scaling Factors Study/optimization - Address critical point #2

Optimization of the radius of the sieve, when compared to the

- 1) BPR size,
- 2) pump speeds and
- 3) mission expected daily production rates

2. Downscaling of the unit for future parabolic flights or space missions

Miniaturisation, new technology concepts of resonance sieves. Liquid and solid flow driving

CONTACT US

KRAMPL@BIOX.SK