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CONTEXT

CO, emissions - Global Carbon Budget 2023
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Fig 1-4. Friedlingstein et al. (2023). Global Carbon Budget 2023.
1 Earth System Science Data, 15(12), 5301-5369.
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CONTEXT

Other cereals | -11%
W 2020

2000

Rice W -14%

Hen eggs in shell B -11%

Raw milk, cattle W -24%

Meat, chicken N 4%
Meat, pig Bl -10%
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Fig 5. Greenhouse gas emissions from agrifood systems, evolution between 2000-2020.

(FAO, 2022).

CO, emissions - Agrifood sector contribution

+1/3 of total GhG emissions in
2020 (FA0, 2022)
> +9% increase since 2000

Mostly for protein-rich food

> +50% demand by 2050
(Boland, 2013)

Need for low-CO, protein-rich
food production systems!




CONTEXT

CO, emissions - Main remediation strategies
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4 Fig 6-10. CO2 remediation stategies (iStock; NASA; Sun, 2016; Hulsen, 2016)
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CONTEXT

heterotrophy

C source: organic compounds

e- source: organic compounds

autotrophy

C source: CO,

e” source: inorganic compounds
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I METABOLISM

><-

Purple non-sulphur bacteria - For CO, removal

heterotrophy

C source: organic compounds

e- source: organic compounds
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autotrophy

C source: CO,

e” source: inorganic compounds
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CONTEXT

Purple non-sulphur bacteria - For CO, removal

Compound Electron content
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6 Fig 11. Redox homeostasis regulation by CO, fixation (Wang et al., 2011; Biorender, 2024).
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CONTEXT

Purple non-sulphur bacteria - For CO, removal
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7 Fig 12. PNSB membrane-bound uptake hydrogenase (Zhu, 2010; Biorender, 2024).
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CONTEXT

Purple non-sulphur bacteria - For protein demand

Protein: +45%

Sugars: +16%

PHAs: +14%

Lipids: +12%

Nucleic acids: +5%
Pigments: 2%

CoQ10: +0.8%

Trace Elements: +0.05%

Fig 13. Average macromolecular composition of PNSB biomass.
(Multiple sources, see thesis; GraphPad Prism 8.0.1., 2024).
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CONTEXT

Purple non-sulphur bacteria - For protein demand

Trace Elements: +0.05%
Relative abundances:

mm E:26.7%

Nicotinic acid: 25.6%
Biotin: 13.3%

Folic acid: 12.3%

B2: 10.2%
Pantothenic acid: 6.1%
B12: 4.30%

B1: 2.46%

B6: 1.02%

itamin

Fig 14. Average vitamin composition of PNSB biomass.
(Sasaki et al., 1998; GraphPad Prism 8.0.1., 2024).
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OBJECTIVES

Objectives - Purple bacteria + CO, + byproduct — Food

1. Design, manufacture and test low-cost bioreactors.

2. Assess reliability in controlled (UMONS) and scarce (AATC/MDRS) conditions.
3. Compare heterotrophy/hydrogenotrophy for CCU.
4

. Characterise PNSB biomass for food applications.

- R\l Heterotrophy ' .
Low-cost +CO, / \
~—~, PNSB

bioreactors —>T> Hydrogenotrophy PNSB
2 biomass — food

PROTMI G
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C MATERIALS & METHODS

Low-cost system - Development timeline

1 1 Fig 15. Materials & Methods, part 2 (own production).
for @ sustinable futie




C MATERIALS & METHODS

Low-cost system - Development timeline

1 2 Fig 16. Materials & Methods, part 3 (own production).
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C( RESULTS

Results - co, capture capacity &
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1 3 Fig 17. CCC and CCU across tests, ANOVA at p-value = 0.5 (own data, GraphPad 8.0.1.).
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RESULTS

Applications - For CO, removal

Rs. rubrum in photoautotrophy + H, Limnospira indica in photoautotrophy
CCR: £0.0443 g CO,/L.d CCR: g CO,/L.d (MELiSSA, 2024)
(’ Productivity: 0.11 g/L.d Productivity: >1.5 g/L.d
- 50
¢mmmnana -t
-40
- M. 3 CCS system: CDRA on ISS
W o 8 CCR: £23 g CO,/L.day (£l Sherit & Knox, 2005)
—_ -2 Volume: 205 "L"
H - 10 Electrical consumption: 1 kWh
] IIj L] ] O .
bf‘véffve‘f il WY ‘ — CO, is not recycled
\f‘§‘ S § \}O Fig 18. Carbon Dioxide Removal Assembly (CDRA)
Qo 5? N) on the ISS (NASA, Wikimedia Commons)
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C(

Results - Macromolecular analyses
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1 5 Fig 19. Macromolecular analyses across tests, ANOVA at p-value = 0.5 (own data, GraphPad 8.0.1.).

RESULTS

Literature:

%
wy

mm Protein: +45%
TEHC (Lipids + PHAs

/7
- Pigments): +28%

Sugars: +16%
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RESULTS

Applications - For protein demand
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1 6 Fig 20. Dietary match of PNSB EAAI compared to beef (own data/Gorissen, 2018, GraphPad 8.0.1.). :
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CON RESULTS

Applications - ECLSS in Space
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1 7 Fig 21. Photohydrogenotrophic PNSB system as a yield buffer for space exploration ECLSS (own production). .-
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RESULTS

Applications - ECLSS in Space

Litres of culture needed to meet the daily physiological needs of one human
Exper. | Protein Sugar Lipids DNA CO:
UMONS- 660.06 +\ 1326.23 + 1345.31 + 835.77 + 1859.47 ¥

VFA 4.46 377.20 L 83.33 L 93.31L 22748.40 L
UMONS- | 949.99 + | 3304.71 + 6683.00 + 2979.25 + 24198.65 +

Hz-1I1 52.98 L 806.98 L 1719.84 L 133.70 L 671.88

Table 1. Relative maximal instantaneous productivity of the four main macromolecules between photohydrogenotrophy
(UMONS-H,-II) and photoheterotrophy (UMONS-VFA). (own data).

PROTMI®
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CON CONCLUSION

Conclusion - Achievements and prospects
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MATERIALS & METHODS

Low-cost system - Cultivation & analyses
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CONCLUSION

Annex A - Chemical systems for CO, reduction
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CONTI CONCLUSION

Annex B - TIC assay principle
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CONCLUSION

Annex C - Anoxygenic photosynthesis
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Annex D - Other electron sinks
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CONCLUSION

nnex E - VFA assimilation in Rs. rubrum
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CONCLUSION

Annex F - Hydrogen production via electrolysis
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Annex G - Productivities

CONCLUSION

Max. inst. Protein Sugar TEHC DNA (ND) CCR
Exper. | theo. prod. prod. prod. prod. prod. [mgL1d1]
[mg.L1.d?] [mgLld?] [mg.L-1.d1] [mg.L1.d1] [mg.L1.d?]

UMONS- 3970 (200.7) 21.30 56.02 2.03 11.67 +
VFA ' + 18.88 +6.06 + 3.47 +0.23 289
UMONS- 1100 5405 8.55 11.28 0.57 Q4.30 1)

Hz-11 ' + 3.06 +2.09 +2.90 +0.03 1.23

PROTMI®
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CONCLUSION

Annex H - EAAI & Dietary match

The dietary match between the EAA profile of PNSB biomass and the EAA
requirement of human adults with was calculated using Equation {3} (from
Spanaoghe et al, 2021)78.

EdAy,. . |[-BEAA ]xdigestibiiity [%]

100 g protein
g EAA {3}

requirements [m

Dietary match [%)] =
EAA

Eventually, the protein quality was assessed following the EAA index (hrta.
EAAI), where it can be defined as “superior” (>1), “high” (0.95-1), “good”
(0.86-0.95), “useful” (0.75-0.86) or “inadequate” (>0.75)%. Equation {4} was
used (from Spanoghe et al, 2021)78.

EAAL = n | Q04 % aa, x x aa,
= |aa, " aa, " aa, {4}

Where: n is the number of EAA; aa,, is the EAA content in the PNSB protein (g EAA.gL

protein); A4,, is the EAA content requirement for humans (g EAA.g'! protein).




C( CONCLUSION

Annex | -Large scale bag bioreactors

L S R R AAARLIEREI IR E P 2SS AV RN E RS A SAAASAANINERR TR RS RRSS ot il

Figure 14: Large-scale prototype developed for the upcycling of molasses. (a) Filling operation
of the 4 L bag under the biosafety cabinet. (b) New enclosure with a 4 L bag under LED light.
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CONCLUSION

Annex J - Axenicity

)
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CONCLUSION

Annex K - Results AATC-VFA

Markwell analysis of protein content evolution (AATC)
Rs. rubrum - MELISSA medium (124 mM C butyrate, 50 mM NaHCO)

I TSGR PR . [ ——— E—— —— T | I

Bag oD mDW in Sugar Sugar su M:?::DW {:]ere;lllnllrll;&;n
ID sample [ug] | TR1[ug] | TRZ[ug] | *1500 ratio [%]

3 5.61 1389.19 155.72 70.59 8.15+4.33

4 5.49 1566.56 117.38 84.47 6.44 +1.49 638+ 211

5 5.96 1700.81 94.44 93.23 5.52+0.05 T

6 6.09 1650.76 98.06 81.15 543 +0.72

Table 9: Sugar:DW ratio calculation based on the Dubois analysis of the sugar content of
Rs. rubrum cultures in MELiSSA butyrate medium (124 mM C butyrate, 50 mM NaHCO3) at
AATC, Krakow, Poland. Data based on four biological replicates, each assessed in two
technical replicates.
D: aspartic acid, N: asparagine, E: glutamic acid, Q: glutamine, H: histidine, K: Iysine,_ R: arginine.
" duplicates (one min and one max) for each nested box. Protein:tDW ratio calculated using the
tDW standard conversion curve (see section 3.5.3). Figure made using GraphPad Prism 8.0.1.
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CONCLUSION

Annex L - Results UMONS-VFA

Markwell analysis of protein content evolution (UMONS-VFA)
Rs. rubrum - MELiISSA medium (124 mM C butyrate, 50 mM NaHCO3)

nin
B
. QIEEEAN QIAGEN® QIAGEN® | .. = Fl;f:::ﬂ- Fluoresc.
DD = le mean oVT. Imnean DNA TRl OovT. IMean
P TR avg. DNA:mDW | DNA:mDW DNA:mDW | pNA:mDW
[ng] [ng] ratio [%] | ratio[%] | M8l | ratio[%] | ratio [%]
1 | 645 | 33535 | 15.03+0.55 | 0.45+0.02 25.30 0.75
2 | 658 | 34751 | 16.72+0.84 | 0.48+0.02 051 32.10 0.92
3 | 629 36005 | 20.03+1.48 | 0.56+0.04 £ 0.06 26.00 0.72 0.77 + 0.10
4 | 646 | 33155 | 19.42+0.14 | 0.59 +0.004 - 26.60 0.80
5 | 6.19 | 34447 | 16.63+0.60 | 0.48+0.02 23.10 0.67

Table 16: DNA:DW ratio calculation based on the QIAGEN-NanoDrop/fluorescence analysis of the TEHC
content of Rs. rubrum cultures in MELiSSA butyrate medium (124 mM C butyrate, 50 mM NaHCO3) at
UMONS, Belgium. Data based on five bmfog:caf replicates.
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duplicates (one min and one max) for each nested box. Protein:tDW ratio ca.’cu.’ated using the

tDW standard conversion curve (see section 3.5.3). Figure made using GraphPad Prism 8.0.1.
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CONCLUSION

Annex M - Results MDRS-H,

Markwell analysis of protein content evolution (MDRS)
Rps. palustris - Freshwater medium (10 mM C acetate, 83.33 mM NaHCO4)

0 I I | 1 istris

Eg‘ mDW in Sugar Sugar Overall mean

fres | Bag | op | cample | TR1 | TRz | MeausugwmDW |y

mM [ug] [ug] [ng] ° ratio [%]

MD =6 1200 | 115027 34.36 26.21 2631047

the |77 [ 1200 ]| 80803 2530 28.93 3361035

usit |8 | 1.265 | 52140 20.78 17.76 3701085 3.77 +1.10

(vM | 9 | 1440 | 78138 25.00 4734 2631048

770710 [ 1315 | 80029 4130 31.04 2521028

biol raple 21: Sugar:DW ratio calculation based on the Dubois analysis of the sugar content of Rps.
Gra palustris cultures in freshwater medium (10mM C acetate, 83.3mM NaHCO3, 3:2 Hz-medium ratio)
at MDRS, Utah, US. Data based on five biological replicates, assessed in two technical replicates.
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Utah, US. Data obtained using a S 433 Amino Acid Analyzer (Sykam). Amino acid code in Table 8.

& AS UM HILCULDS WL JHIHL W WL HHIuAy U CULID oL UUA L T VLCLTL WL VY T WL LWL WU LTW WO LILE LSV

standard conversion curve (see section 3.5.3). Figure made using GraphPad Prism 8.0.1.
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CONCLUSION

Annex N - Results UMONS-H,

Markwell analysis of protein content evolution (UMONS-H,)
Rs. rubrum - MELISSA medium (168mM NaHCO,, 10mM C acetate)

60 =r r ' r r 1
i QIAGEN® QIAGEN® QIAGEN® Fluoresc. | Flyoresc.
Bag mDWin DNA mean ovr. mean Fluoresc. L=l ovr. mean
oD sample DNA TR1
ID p TR avg. DNA:mDW | DNA:mDW DNA:mDW | pNA:mDW
[ng] [ng] ratio [%] | ratio [%] [me] ratio [%] | ratio [%]
7 | 340 | 18145 | 9.75+038 | 054+0.02 13.20 0.73
8 | 3.23| 18107 | 9.45+0.08 | 0.52+0.004 0.52 11.40 0.63 0614010
9 | 349 | 18677 | 980+024 | 052+0.01 +0.02 11.10 0.59 e
10 | 333 | 17784 | 8.63+0.15 | 0.49+0.01 8.80 0.49

Table 29: DNA:DW ratio calculation based on the QIAGEN-NanoDrop/fluorescence analysis of the TEHC
content of Rs. rubrum cultures in MELiSSA acetate medium (10 mM C acetate, 169 mM NaHCOs, 3:2 Hz-
medium ratio) at UMONS, Belgium. Data based on four biological replicates.

obta ratio) at UMONS, Belgium. Data obtained in technical duplicates (one min and one max) for 'I-V,

Shim each nested box. Protein:tDW ratio calculated using the tDW standard conversion curve (see
section 3.5.3). Figure made using GraphPad Prism 8.0.1.
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Annex O - cCU/macromolecule ratio results

80 =y 1.0
Max. inst. Protein Sugar TEHC DNA (ND) CCR
Exper. | theo.prod. prod. prod. prod. prod. [mg L 2.d7]
[mgl.d'] | [mgL.d?] | [mgL.d'] | [mgL.d?] | [mgL.d]

UMONS- 397.0 200.7 21.30 56.02 2.03 11.67 +
VFA ' + 18.88 +6.06 + 3.47 +0.23 2.89
UMONS- 110.0 54.95 8.55 11.28 0.57 4430 +
Hz-11 ' +3.06 +2.09 +2.90 +0.03 1.23

Litres of culture needed to meet the daily physiological needs of one human
(70 kg, 2000 kcal diet) = 46.2 g protein; 25 g sugar; 66.7 g lipids; 1.5 g TNA; -1072 g CO2124,

CONCLUSION

Exper. | Protein Sugar Lipids DNA CO:z

UMONS- | 260.06+ | 1326.23 1345.31 + 835.77 + 91859.47 +
VFA 2446 L 377.20 L 83.33 L 93.31L 2274840 L

UMONS- | 94999+ | 3304.71+ 6683.00 + 2979.25 + 24198.65 +
Hz-11 5298 L 806.98 L 1719.84 L 133.70 L 671.88 L

Table 30: Relative maximal instantaneous productivity of the four main macromolecules between
photohydrogenotrophy (UMONS-H:z-1I) and photoheterotrophy (UMONS-VFEA). Data based on the same
replicate number as Figure 30. Maximal instantaneous theoretical productivity (productivity at umax)
calculated following the method described in section 3.4.3. Only NanoDrop (ND) data was considered
for DNA productivity assessment (less error). The daily physiological needs of one human were defined
as described in section 1.4.




