

Nitrogen gas and water recovery using the Nitrogenisor bioreactor for crewed Mars mission: A feasibility study based on stochastic mission scenarios.

Tim Van Winckel, Marijn Timmer, Jolien de Paepe, Marc Spiller, Kai Udert, Christophe Lasseur and Siegfried Vlaeminck

90 days Average resupply time to ISS 00

CT STORES CONTRACTOR OF STORES

650 days

Current estimated crewed mission time to Mars

a) Opposition Class: Short-Stay Mission

Drake, B.G., Hoffman, S.J. and Beaty, D.W., 2010, March. Human exploration of Mars, design reference architecture 5.0. In 2010 IEEE Aerospace Conference (pp. 1-24). IEEE.

State-of-the-art regenerative life support at the ISS

- ECLSS = environmental control and life support system
- ISS ECLSS = open loop

State-of-the-art regenerative life support at the ISS

- ECLSS = environmental control and life support system
- ISS ECLSS = open loop

Only 85% of water recovered

M E S S A State-of-the-art regenerative life support at the ISS

- ECLSS = environmental control and life support system
- ISS ECLSS = open loop

Only 85% of water recovered

→ No N₂ gas regeneration
 → 133 kg N₂ to ISS per year¹

(1) Schaezler, R.N. and Cook, A.J., 2015, July. Report on ISS O2 Production, Gas Supply and Partial Pressure Management. In *International Conference on Environmental Systems* (No. JSC-CN-33571).

Bleeding-edge solutions for water recovery

- Crewed Mars transit mission requires
 98% water recovery
- Current high TRL proposal involves recovering water from urine brine
 → 80% efficient

Kelsey, L.K., Pasadilla, P., Fisher, J. and Lee, J., 2015, July. Ionomer-membrane Water Processor (IWP) Engineering Development Unit (EDU) Brine Water Recovery Test Results. 45th International Conference on Environmental Systems.

----- H2

Nitrogenisor concept for pressure management

- Nitrogenisor = membrane aerated biofilm reactor + electrochemical urine stabilization
- Biological conversion of urine to N₂
 →N₂ can be used for pressure management
 - → No brine formation equals 100% theoretical water recovery

Is the Nitrogenisor concept feasible for a crewed Mars transit mission based on mass and energy considerations?

- 1. Can Nitrogenisor provide enough N₂ to offset losses and maintain cabin pressure?
- 2. Is the mass associated with hardware and consumables favorable to state of the art?
- 3. Is the energy requirement comparable or favorable to state of the art?

- Urine estimation:
 - Basic metabolic model based on protein intake and N diversion to urine

$$N_U = M_{CM} \cdot f_{PN,i} \cdot f_{N,PN} \cdot f_{i \to U}$$

- NGR mass balance:
 - Based on stoichiometric balances.
- Leakage estimation based on preliminary DST requirements
 - → Structural leakage¹ + 1 contingency EVA per month² 0.05 kg/d
- Total mission time = 650 days
- # Crew members = 4

(1) Adamek, C., 2019. *Gateway system requirements* (No. JSC-E-DAA-TN71173). (2) Goodliff, K. E., Stromgren, C., Dickert, Z., Ewert, M. K., Hill, J., & Moore, C. (2017). Logistics Needs for Future Human Exploration Beyond Low Earth Orbit. In *AIAA SPACE and Astronautics Forum and Exposition* (p. 5122).

- Stochastic approach was used to implement uncertainty in the scenario analysis
 - 1000 random samples were taken from distributions below

- Leakage estimation based on preliminary DST requirements
 - → Structural leakage + 1 contingency EVA per month

0.05 kg/d

0.015 kg/d

Crew parameters				
Crew member Weight	75	±	10	kg
Fraction N found in urine	0.85	±	0.05	g N/g N
Urine volume	1.64	±	0.28	kg
NGR parameters				
Fraction COD to aerOHO	0.6	±	0.1	(-)
AerAOB/NOB activity ratio*	3	±	1	(-)
N removal efficiency	77	±	8	%
N removal rate	1.09	±	0.14	g N/L/d
* lognormal distribution				

Crew parameters				
Crew member Weight	75	±	10	kg
Fraction N found in urine	0.85	±	0.05	g N/g N
Urine volume	1.64	±	0.28	kg
NGR parameters				
Fraction COD to aerOHO	0.6	±	0.1	(-)
AerAOB/NOB activity ratio*	3	±	1	(-)
N removal efficiency	77	±	8	%
N removal rate	1.09	±	0.14	g N/L/d
* lognormal distribution				

- Average N₂-N produced = 14 ± 2.5 kg N₂-N
 → Average offset of 88 %
- 25% of the runs resulted in enough gas production to offset all losses
- Long 'tail' in distribution
 → Critical parameters?

M ELESS A

Can Nitrogenisor provide enough N₂ to offset losses and maintain cabin pressure?

M ELESS A

Can Nitrogenisor provide enough N₂ to offset losses and maintain cabin pressure?

- 1. Nitrogenisor can offset on average 88% of the N losses
- 2. In 25% of the scenarios, enough N_2 gas was produced to offset all N losses
- 3. High N removal efficiency and PN/A pathway crucial for high offset

Is the mass associated with hardware and consumables favorable to state of the art?

- VCD and BPA hardware numbers sourced from literature
- Nitrogenisor numbers based on required volume to treat N load
- →Nitrogenisor hardware mass is significantly lower (57%)

- Total comparative mass of Nitrogenisor is lower than VCD scenario
- BPA wins the mass competition

Total mass

- Total comparative mass of Nitrogenisor is lower than VCD scenario
- BPA wins the mass competition

 → Mainly because of lower consumable need in the water reclamation step

Detailed mass

Is the mass associated hardware and consumables comparable or favorable to state of the art?

- 1. Nitrogenisor Hardware mass is 57 % lower than state of the art
- 2. Brine water recuperation wins in terms of total mass because of lower salinity
- 3. Integrated solution for salt loading to water reclamation step is required

- VCD and BPA numbers sourced from literature
- Nitrogenisor based pumping, stabilization, oxygen supply and CO₂ removal
- → Nitrogenisor requires significantly less energy!
- → 97% of nitrogenisors energy budget is to produce O₂ and treat CO₂

Energy required to treat urine

- VCD and BPA numbers sourced from literature
- Nitrogenisor based pumping, stabilization, oxygen supply and CO₂ removal
- → Nitrogenisor requires significantly less energy!
- → 97% of nitrogenisors energy budget is to produce O₂ and treat CO₂

Is the energy requirement comparable or favorable to state of the art?

- 1. Nitrogenisor uses considerably less energy compared to state of the art to treat urine
- 2. Almost all energy associated with treating urine using nitrogenisor is O₂ production and CO₂ removal
- 3. While significant for Nitrogenisor, added O₂ production and CO₂ removal is insignificant for total energy budget

Is the Nitrogenisor concept feasible for a crewed Mars transit mission based on mass and energy considerations?

- 1. Can Nitrogenisor provide enough N₂ to offset losses and maintain cabin pressure?
 - \rightarrow Nitrogenisor can offset on average 88% of the N losses
- 2. Is the mass associated with hardware and consumables favorable to state of the art?
 - -> Nitrogenisor Hardware mass is 57 % lower than state of the art, though beaten by brine water recovery
- 1. Is the energy requirement comparable or favorable to state of the art?
 - → Nitrogenisor uses considerably less energy compared to state of the art to treat urine

2022 MELISSA CONFERENCE

8-9-10 NOVEMBER 2022

山田市沿岸沿岸

European Space Agency

www.melissafoundation.org

Follow us
f in Y D

THANK YOU.

Tim Van Winckel University of Antwerp

tim.vanwinckel@uantwerpen.be

2022 MELISSA CONFERENCE 8-9-10 NOVEMBER 2022

beyond gravity

ENGINSOFT

QINETIQ

2022 MELISSA CONFERENCE 8-9-10 NOVEMBER 2022

