2022 MELISSA CONFERENCE CREA,]A-\l IC\I:ICI;QCUI_AR

A 8-9-10 NOVEMBER 2022
FUTURE

Nitrogen gas and water recovery using the Nitrogenisor
bioreactor for crewed Mars mission: A feasibility study
based on stochastic mission scenarios.

Tim Van Winckel, Marijn Timmer, Jolien de Paepe, Marc Spiller, Kai Udert,
Christophe Lasseur and Siegfried Vlaeminck

—3
=
r

o
(7]
Q

Air & Water Technology aquatic research

University of Antwerp e awa
| Sustainable Energy,
000

European Space Agency



PSS

90 650




90 650 oars

Average resupply time to ISS Current estimated crewed mission time to Mars
MARS ARRIVAL ”—‘\ MISSION TIMES

41412038 (Day 217) _,@ OUTBOUND 217 days

STAY 30 days
MARS DEPARTURE . RETURN 403 days
5/4/2038 (Day 247) I TOTAL MISSION 650 days

)

EARTH RETURN
6/11/2039 (Day 651) EARTH DEPARTURE

8/30/2037 (Day 0)

VENUS SWING-BY
12/8/2038 (Day 465)

a) Opposition Class: Short-Stay Mission

Drake, B.G., Hoffman, S,J. and Beaty, D.W., 2010, March. Human exgloration of Mars,
design reference architecture 5.0. In 2070 IEEE Aerospace Conference (pp. 1-24). |IEEE.
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alb State-of-the-art regenerative life support at the

e ECLSS = environmental control and life
support system

 |ISS ECLSS = open loop

removal

— Only 85% of water recovered

Oxygen
generation

Pressure vent
managemen

—> No N, gas regeneration
- 133 kg N, to ISS per year!
- 32 kg needed for trip to Mars

Urine Water
treatment reclamation®

.

Brine
storage

(1) Schaezler, R.N. and Cook, A.J., 2015, July. Report on ISS 02 Production, Gas
Supply and Partial Pressure Management. In International Copference on
Environmental Systems (No. JSC-CN-33571).
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* Crewed Mars transit mission requires
98% water recovery

* Current high TRL proposal involves
recovering water from urine brine
- 80% efficient
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Kelsey, L.K., Pasadilla, P., Fisher, J. and Lee, J., 2015,July. lonomer-membrane Water Processor (IWP)
Engineering Development Unit (EDU) Brine Water Recovery Test Results. 45th International Conference on

Environmental Systems.
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E Nitrogenisor concept for pressure management
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* Nitrogenisor = membrane aerated biofilm
reactor + electrochemical urine stabilization

* Biological conversion of urine to N,
=N, can be used for pressure management

- No brine formation equals 100% theoretical
water recovery

removal

Urine Oxygen Co,
stabilization generation

Pressure
management

Nitrogenisor Water

[ ‘ reclamation®




Is the Nitrogenisor concept feasible for a crewed Mars transit mission
based on mass and energy considerations?

1. Can Nitrogenisor provide enough N, to offset losses and maintain cabin pressure?
2. Isthe mass associated with hardware and consumables favorable to state of the art?
3. Isthe energy requirement comparable or favorable to state of the art?
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€ Mission scenario methodology

* Urine estimation:
e Basic metabolic model based on protein intake and N diversion to urine

Ny = M¢y ‘fPN,:: ‘fN,PN 'fi—>U
* NGR mass balance:
e Based on stoichiometric balances.

* Leakage estimation based on preliminary DST requirements

—> Structural leakage! + 1 contingency EVA per month?
0.05 kg/d 0.015 kg/d

e Total mission time = 650 days
 # Crew members =4

(1) Adamek, C., 2019. Gateway system requirements (No. JSC-E-DAA-TN71173).

(2) Goodliff, K. E., Stromgren, C., Dickert, Z., Ewert, M. K., Hill, J., & Moore, C. (2017). Logistics
Needs for Future Human Exploration Beyond Low Earth Orbit. In AIAA SPACE and Astronautics
Forum and Exposition (p. 5122). 10



S Can Nitrogenisor provide enough N, to offset
= losses and maintain cabin pressure?

 Stochastic approach was used to implement uncertainty in the

scenario analysis

* 1000 random samples were taken from distributions below

Crew parameters

Crew member Weight
Fraction N found in urine
Urine volume

NGR parameters

Fraction COD to aerOHO
AerAOB/NOB activity ratio*
N removal efficiency

N removal rate

* lognormal distribution

75
0.85
1.64

0.6

77
1.09

+ + I+

+ + + +

10
0.05
0.28

0.1

0.14

gN/gN — Urine estimation

— Stochiometric assumptions

g N/L/d B
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Can Nitrogenisor provide enough N, to offset

S ' b )
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* Leakage estimation based on preliminary DST
requirements

— Structural leakage + 1 contingency EVA per month
0.05 kg/d 0.015 kg/d

Surplus
I generated

15.9 kg N
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i . . .
- losses and maintain cabin pressure?
20 -
=z
Crew parameters o
Crew member Weight 75 = 10 kg et
Fraction N found in urine 0.85 = 0.05 gN/gN -% 15 -
Urine volume 1.64 *+ 0.28 kg 3
NGR parameters =4
Fraction COD to aerOHO 06 = 01 ) 2
AerAOB/NOB activity ratio* 3 + 1 (-) GE) 10
N removal efficiency 77 * 8 % .g
N removal rate 1.09 £ 0.14 g N/L/d 3
* lognormal distribution E s
= s
o

Can Nitrogenisor provide enough N, to offset

15.9 kg N
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* Average N,-N produced = 14 + 2.5 kg N,-N
- Average offset of 88 %

* 25% of the runs resulted in enough gas
production to offset all losses

* Long ‘tail’ in distribution
—> Critical parameters?

20 -

Total N requirement/production (kg N)

-
(6]
1

-
o
1

(&)
1

Can Nitrogenisor provide enough N, to offset
losses and maintain cabin pressure?

15.9 kg N
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Can Nitrogenisor provide enough N, to offset
losses and maintain cabin pressure?
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Can Nitrogenisor provide enough N, to offset losses and maintain cabin
pressure?

1. Nitrogenisor can offset on average 88% of the N losses
2. In 25% of the scenarios, enough N, gas was produced to offset all N losses
3. High N removal efficiency and PN/A pathway crucial for high offset




Is the mass associated with hardware and

- 2 consumables favorable to state of the art?
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P o Can Nitrogenisor provide enough N, to offset
-2 losses and maintain cabin pressure?

Hardware mass

500

 VCD and BPA hardware numbers
sourced from literature

400

* Nitrogenisor numbers based on
required volume to treat N load

w
o
o

Hardware mass (kg)
N
o
o

- Nitrogenisor hardware mass is
significantly lower (57%)

a2 |



b Can Nitrogenisor provide enough N, to offset
2> losses and maintain cabin pressure?

Total mass
* Total comparative mass of 5000
Nitrogenisor is lower than VCD - '
scenario I ——
£
* BPA wins the mass competition £ | ,
@ 30004
2 —
£ . i
:
% 1000
S
VCD BPA NGR

21

-~ |




b Can Nitrogenisor provide enough N, to offset
2> losses and maintain cabin pressure?

* Total comparative mass of 2500
Nitrogenisor is lower than VCD
scenario

* BPA wins the mass competition

- Mainly because of lower consumable
need in the water reclamation step

Detailed mass

mVCD
= BPA
NGR
II N
N\
X

22



Is the mass associated hardware and consumables comparable or
favorable to state of the art?

1. Nitrogenisor Hardware mass is 57 % lower than state of the art
2. Brine water recuperation wins in terms of total mass because of lower salinity
3. Integrated solution for salt loading to water reclamation step is required

23



(i Can Nitrogenisor provide enough N, to offset
-2 losses and maintain cabin pressure?

Energy required to treat urine

40

 VCD and BPA numbers sourced from
literature

* Nitrogenisor based pumping,
stabilization, oxygen supply and CO,
removal

w
o
1

- Nitrogenisor requires significantly less
energy!
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Is the energy requirement comparable or favorable to state of the art?

1. Nitrogenisor uses considerably less energy compared to state of the art to treat urine
2. Almost all energy associated with treating urine using nitrogenisor is O, production and CO, removal
3. While significant for Nitrogenisor, added O, production and CO, removal is insignificant for total energy budget




e L In conclusion...
-_—

Is the Nitrogenisor concept feasible for a crewed Mars transit mission
based on mass and energy considerations?

1. Can Nitrogenisor provide enough N, to offset losses and maintain cabin pressure?
= Nitrogenisor can offset on average 88% of the N losses
2. Isthe mass associated with hardware and consumables favorable to state of the art?

= Nitrogenisor Hardware mass is 57 % lower than state of the art, though beaten by brine water recovery
1. Isthe energy requirement comparable or favorable to state of the art?
= Nitrogenisor uses considerably less energy compared to state of the art to treat urine
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