

MODELING AND EXPERIMENTAL CAMPAIGN OF A NOVEL, COMPACT, THIN-TUBE PHOTOBIOREACTOR FOR HIGH VOLUMETRIC PRODUCTIVITY

JACK HOENIGES¹, RAMI MAKAREM¹, WALID BLEL¹, LAURENT PILON², JEREMY PRUVOST¹

¹Nantes Université, Oniris, IMT Atlantique, CNRS, GEPEA, UMR 6144, F-44600 Saint-Nazaire, France

²Mechanical and Aerospace Engineering Department, Henry Samueli School of Engineering and Applied

Science, University of California, 420 Westwood Plaza, Los Angeles, CA 90095, USA

jack.hoeniges@etu.univ-nantes.fr

http://www.gepea.fr/

Context: MELiSSA Project

- Photosynthetic algae
 - Consume waste effluents
 - Produce biomass, O₂

Intensified PBRs

 Large ratio of illuminated surface to culture volume, a_{light}

Context: Photobioreactors

Photobioreactor productivity as a function of illuminated surface-to-volume ratio for Chlamydomonas reinhardtii under continuous operation in light-limited conditions • Intensified PBRs

- Large ratio of illuminated surface to culture volume, a_{light}
- High biomass concentration
- High volumetric productivity

Context: Photobioreactors

DiCoFluV¹ volumetrically illuminated PBR (courtesy of Institut Pascal – UCA - France)

Intensified PBRs

- Large ratio of illuminated surface to culture volume, a_{light}
- High biomass concentration
- High volumetric productivity

AlgoFilm² thin film PBR (GEPEA – NU - France)

J.-F. Cornet, Chemical Engineering Science. Vol. 65, pp. 985-98, 2010.
 J. Pruvost et al. Algal Research, vol. 21, pp. 120-137, 2017

Biofaçades: Symbiosis between building waste and culture inputs

Biofaçades: Symbiosis between building waste and culture inputs

- Heavier structure \rightarrow higher cost
 - Culture volume
 - Wall thickness

Biofaçades: Symbiosis between building waste and culture inputs

- Heavier structure \rightarrow higher cost
 - Culture volume \rightarrow intensification
 - Wall thickness

Biofaçades: Symbiosis between building waste and culture inputs

- Heavier structure \rightarrow higher cost
 - Culture volume \rightarrow intensification
 - Wall thickness \rightarrow tubular design

Biofaçades: Symbiosis between building waste and culture inputs

- Heavier structure \rightarrow higher cost
 - Culture volume \rightarrow intensification
 - Wall thickness \rightarrow tubular design

THIN-TUBE PHOTOBIOREACTOR (diameter <1cm)

Outline

Objectives

- Develop a comprehensive light transfer model for thintube photobioreactors to drive design decisions
- 2. Experimental proof-of-concept

Modeling approach

- Light transfer
- Growth kinetics

Simulation results

Experimental results

Monte Carlo ray tracing

- Tracks many individual photons
- Models scattering and absorption:
 - Snell's law
 - Fresnel's equations

Monte Carlo ray tracing

- Tracks many individual photons
- Models scattering and absorption:
 - Snell's law
 - Fresnel's equations

Output: Local rate of photon absorption, $\mathcal{A}(r, \theta)$ in $[\mu mol_{hv}/g/s]$

Common assumptions:

- Negligible refraction effects
- Incident light is normal to tube
- Negligible culture scattering

Common assumptions:

- Negligible refraction effects
- Incident light is normal to tube
- Negligible culture scattering

MCRT method enables us to relax these assumptions

Modeling approach: Growth kinetics

Kinetic model growth model for *Chlorella vulgaris*³ (issued from MELiSSA research on photosynthetic growth modeling)

- Culture is assumed to be light-limited
- Local rate of oxygen production, $J_{0_2}(r, \theta)$

$$J_{O_2}(r,\theta) = \rho_M \frac{K}{K+\mathcal{A}} \overline{\phi'_{O_2}} \mathcal{A} - \frac{J_{NADH_2}}{\nu_{NADH_2-O_2}} \frac{K_r}{K_r + \mathcal{A}}$$

Parameter	Value	Units
ρм	0.8	-
J_{NADH_2}	$2.8 { imes} 10^{-3}$	$\mathrm{mol}_{\mathrm{NADH}_2}\mathrm{kg}_{\mathrm{X}}^{-1}\mathrm{s}^{-1}$
ν_{O_2-X}	1.13	_
$\overline{\phi}_{\mathrm{O}_2}^{'}$	$1.1{ imes}10^{-7}$	$\mathrm{mol}_{\mathrm{O}_2} \mathrm{\mu}\mathrm{mol}_{h \mathrm{\nu}}^{-1}$
M_X	0.024	$kg_{\rm X}mol_{\rm C}^{-1}$
$\nu_{\mathrm{NADH}_2-\mathrm{O}_2}$	2	-
K	40,000	$\mu \mathrm{mol}_{h u}\mathrm{kg}^{-1}\mathrm{s}^{-1}$
K _r	556.5	$\mu \mathrm{mol}_{h u}\mathrm{kg}^{-1}\mathrm{s}^{-1}$
\mathcal{A}_{c}	2800	$\mu mol_{h\nu} kg^{-1} s^{-1}$

Modeling approach: Growth kinetics

Kinetic model growth model for *Chlorella vulgaris*³ (issued from MELiSSA research on photosynthetic growth modeling)

- Culture is assumed to be light-limited
- Local rate of oxygen production, $J_{0_2}(r, \theta)$

Parameter	Value	Units	
$ ho_M$	0.8	-	
J_{NADH_2}	$2.8{ imes}10^{-3}$	$\mathrm{mol}_{\mathrm{NADH}_2}\mathrm{kg}_{\mathrm{X}}^{-1}\mathrm{s}^{-1}$	
ν_{O_2-X}	1.13	-	
$\overline{\phi}_{\mathrm{O}_2}$	$1.1 { imes} 10^{-7}$	$\mathrm{mol}_{\mathrm{O}_2} \mu \mathrm{mol}_{h \nu}^{-1}$	
M_X	0.024	$kg_{\rm X}mol_{\rm C}^{-1}$	
$ u_{\mathrm{NADH}_2-\mathrm{O}_2} $	2	-	
Κ	40,000	$\mu \mathrm{mol}_{h u}\mathrm{kg}^{-1}\mathrm{s}^{-1}$	
K _r	556.5	$\mu \mathrm{mol}_{h u}\mathrm{kg}^{-1}\mathrm{s}^{-1}$	
\mathcal{A}_{c}	2800	$\mu mol_{h\nu} kg^{-1} s^{-1}$	

Modeling approach: Growth kinetics

Kinetic model growth model for *Chlorella vulgaris*³ (issued from MELiSSA research on photosynthetic growth modeling)

- Culture is assumed to be light-limited
- Local rate of oxygen production, $J_{0_2}(r, \theta)$
- Average growth rate, $ar{r}_{\!x}$

$$\bar{r}_x = \frac{\bar{J}_{O_2} C_x M_x}{\nu_{O_2 - X}}$$

Parameter	Value	Units
ρм	0.8	_
$J_{ m NADH_2}$	$2.8 { imes} 10^{-3}$	$\mathrm{mol}_{\mathrm{NADH}_2}\mathrm{kg}_{\mathrm{X}}^{-1}\mathrm{s}^{-1}$
$\nu_{\mathrm{O}_2 - X}$	1.13	-
$\overline{\phi}_{\mathrm{O}_2}^{'}$	$1.1{ imes}10^{-7}$	$\mathrm{mol}_{\mathrm{O}_2} \mathrm{\mu}\mathrm{mol}_{h \mathrm{\nu}}^{-1}$
M_X	0.024	$kg_{\rm X}mol_{\rm C}^{-1}$
$ u_{\mathrm{NADH}_2-\mathrm{O}_2}$	2	-
Κ	40,000	$\mu \mathrm{mol}_{h u}\mathrm{kg}^{-1}\mathrm{s}^{-1}$
K_r	556.5	$\mu \mathrm{mol}_{h u}\mathrm{kg}^{-1}\mathrm{s}^{-1}$
\mathcal{A}_{c}	2800	$\mu mol_{h\nu} kg^{-1} s^{-1}$

Simulation results: Impact of tube thickness

- Simulation parameters
 - Reactor
 - Inner radius: $r_i = 1 \text{ cm}$
 - Incident photon flux: $q_{in}^{\prime\prime}$ = 250 µmol/m²/s
 - Incidence angle: $\theta_i = 0^\circ$
 - Culture
 - Biomass concentration: $C_x = 0.6 \text{ g/L}$
 - Absorption cross section: $\bar{A}_{abs} = 400 \text{ m}^2/\text{kg}$
 - Scattering cross section: \bar{S}_{sca} = 4000 m²/kg
 - Asymmetry factor: g = 0.974

Representative of Chlorella vulgaris

- Tube thickness can be optimized to improve average growth rate
 - Refraction through tube walls redirects light towards culture
 - Large tube thickness Less concentrating effect
 - Small tube thickness Smaller area to capture and redirect light

Simulation results: Impact of tube thickness

- Simulation parameters
 - Reactor
 - Inner radius: $r_i = 1 \text{ cm}$
 - Incident photon flux: $q_{in}^{\prime\prime}$ = 250 µmol/m²/s
 - Incidence angle: $\theta_i = 0^\circ$
 - Culture
 - Biomass concentration: $C_x = 0.6 \text{ g/L}$
 - Absorption cross section: $\bar{A}_{abs} = 400 \text{ m}^2/\text{kg}$
 - Scattering cross section: \bar{S}_{sca} = 4000 m²/kg
 - Asymmetry factor: g = 0.974

Representative of Chlorella vulgaris⁴

[4] R. Kandilian et al. Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 175, pp. 30-45, 2016

Simulation results: Impact of tube thickness

• Simulation parameters

Reacto

- Inner radius: $r_i = 1$ cm
- Incident photon flux: $q_{in}'' = 250 \,\mu\text{mol/m}^2/\text{s}$
- Incidence angle: $\theta_i = 0$
- Up to **15%** decrease in average
 - Absorption growth rate = 400 m²/kg
 - Scattering cross section: \bar{S}_{sca} = 4000 m²/kg
 - Asymmetry factor: g = 0.974

Representative of Chlorella vulgaris

[4] R. Kandilian et al. Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 175, pp. 30-45, 2016

Experimental results: Batch operation

- PBR operation
 - Air/CO2 bubbling
 - pH setpoint: 7.0
 - Incident photon flux, $q_{in}^{\prime\prime}$ between 50 to 300 μ mol/s/m²
 - Nitrogen source: NH₄HCO₃
- PBR performance
 - Maximum concentration:
 - $C_x = 12 \text{ g/L}$
 - Average growth rate:
 - $\bar{r}_x = 0.8 \text{ g/L/day}$

Experimental results: Continuous operation

- PBR operation
 - Injection of fresh culture medium once daily
 - pH setpoint: 7.0
 - Incident photon flux, $q_{in}^{\prime\prime}$ = 250 μ mol/s/m²
- PBR performance
 - Biomass concentration:
 - $C_x = 10 16 \text{ g/L}$
 - Average productivity :
 - $\bar{r}_x = 3 \text{ g/L/day}$
 - $\bar{s}_x = 6 \text{ g/m}^2/\text{day}$

Conclusions

- Simulations
 - Tube wall thickness impacts growth rate
- Experiments
 - Current thin-tube PBR design can achieve high concentrations and growth rates

Future work

- Simulations

- Include diffuse light in modeling
- Investigate impact of angle of incidence
- Experiments
 - Operate reactor in continuous mode

THANK YOU.

Jack HOENIGES

jack.hoeniges@etu.univ-nantes.fr

www.melissafoundation.org

Follow us on social networks

http://www.gepea.fr/

GEPEA Environnement • Énergie

MEAS A Simulation results: Impact of scattering by microalgae

- Microalgae are primarily forward scattering
 - Asymmetry factor $g \approx 1$
 - Small deviations in g can impact LRPA due to large scattering cross-section

- Assumptions:
 - General
 - Optically smooth interfaces
 - PAR averaged optical properties
 - Negligible wave effects
 - Incident light
 - Collimated
 - Diffuse light neglected
 - Culture
 - Homogeneous
 - Constant absorption cross-section

Kinetic growth model terms

$$J_{O_2}(r,\theta) = \left[\rho_M \frac{K}{K+\mathcal{A}} \overline{\phi'_{O_2}} \mathcal{A} - \frac{J_{NADH_2}}{\nu_{NADH_2-O_2}} \frac{K_r}{K_r + \mathcal{A}}\right]$$

- ρ_M maximum energy yield for photon conversion
- *K*-half-saturation constant for photosynthesis
- K_r saturation constant describing inhibition of respiration in light
- $\overline{\varphi'_{O_2}}$ mole O_2 quantum yield for the Z scheme of photosynthesis
- J_{NADH_2} specific rate of cofactor regeneration on the respiratory chain
- $v_{NADH_2-O_2}$ stoichiometric coefficient of cofactor regeneration on the respiratory chain

$$\bar{r}_x = \frac{\bar{J}_{O_2} C_x M_x}{\nu_{O_2 - X}}$$

- M_x C-molar mass for the biomass
- v_{O_2-X} oxygen production stoichiometric coefficient

Medium composition: Modified Sueoka⁴

Name	Formula	g/L
Ammonium Bicarbonate	NH ₄ HCO ₃	7.279
Magnesium Sulfate Heptahydrate	MgSO ₄ , 7H ₂ O	0.809
Calcium Chloride Dihydrate	CaCl ₂ , 2H ₂ O	0.110
Potassium phosphate	KH_2PO_4	0.342
Dipotassium phosphate	K_2HPO_4	0.657
Hutner's Solution	-	1.500