

Implementation of an automated process for a continuous *Limnospira* harvesting and the recycling of the culture medium for space applications

Dries Demey¹, Estelle Couallier², Jordan Tallec², Marie Vandermies¹, Céline Coene¹, Brigitte Lamaze³, Christel Paille³

QinetiQ
 GEPEA/Capacités
 ESA
 ALGOSOLIS
 CAPACITÉ

Implementation of an automated process for a continuous *Limnospira* harvesting and the recycling of the culture medium for space applications

Dries Demey¹, Estelle Couallier², Jordan Tallec², Marie Vandermies¹, Céline Coene¹, Brigitte Lamaze³, Christel Paille³

QinetiQ
 GEPEA/Capacités
 ESA
 ALGOSOLIS
 CAPACITÉ

- 1 Context
- 2 Requirements identification
- 3 Technology trade-off
- 4 Breadboard configuration
- 5 Tests
- 6 Conclusions

2. Requirements identification

• 80 L/day

- Continuous life test period of 40 days
- Axenicity •

QINETIQ

Recover > <u>90%</u> of the culture medium

Filtrate recovery & solids in concentrate/cake

3. Technology trade-off

•C

CAPACITÉS

ALISSE Criteria

Biomass harvesting unit (BHU)

4. Breadboard configuration

Solid-Liquid Separation Technology - MELiSSA conference | November 2022 | ©

4. Breadboard configuration

Photobioreactor

Closed system fully automated

Medium filtration unit

Filter house

Permeate outlet

> Heat exchanger

4. Breadboard configuration

START

O Idle

Actual

Next

5. Tests

QINETIQ

MESSA Organization of the experiments

- 2 scales of experiments :
 - Lab scale \rightarrow Feasibility tests (membrane selection, process sizing...)
 - Pilot scale \rightarrow Demonstration tests (scale up, test of robustness...)
- 2 process studies :
 - Biomass Harvesting Unit (BHU) \rightarrow Dead-end filtration
 - Medium Filtration Unit (MFU) \rightarrow Cross flow filtration

BHU feasibility test

Objective : Select the most efficient membrane cut-off in terms of separation performance and filtrate productivity

Different mesh was tested :

40µm

Microscopic observation:

Is used for scale up

BHU feasibility test

Filtrate productivity

Cake resistance analysis

In dead-end filtration, the accumulation of organic material (=cake formation) decreases the permeability **How can we avoid cake formation ?**

Addition of a vibrating table

Vibrating system

Dead end filtration \rightarrow Cake formation

MESSA BHU pilot implementation

BHU Feasibility test

- 5 μm
- Vibration system

Control system and electronics

Automatic procedure and control to manage dead end filtration :

- Step 1 : Cycle of filtrate production
- Step 2 : Periodic backwash cycle
- Step 3 : Drain cycles of concentrated biomass

Objectives of the **B**iomass Harvesting Unit :

- Separate microalgae from culture media, 1.
- Working in continuous mode, 2.

1. Separation performance :

only 3% of the initial suspended matter passed the membrane

2. Filtrate productivity through the time

Deviation of the system in infinite backwash loops after several hours

QINETIQ

BHU optimization and limits

Optimizing vibration time, frequency and operating procedures to reduce cake resistance

↗the filtrate volume by 6
But system deviation still present

Limitation of the actual BHU design and perspectives

Optimization of the filter unit design to prevent cake formation

Investigate link between *Limnospira* culture properties and filtration performance

Filter material selection to minimize biomass adherence

MFU Feasibility test

QINETIQ

Objective : Validate experimentally the results from the literature review in order to size the pilot scale system

MFU demonstration test

QINETIQ

Objectives of the MFU :

- 1. Separate dissolved organics from culture medium,
- 2. Concentrate organics,

Through the VRR, the permeability flux keep a good performance

- VRR 1: 61 l/h/m²
- VRR 5 : 55 l/h/m²
- VRR 10 : 50 l/h/m²

6. Conclusion

Conclusion and future work

- Objective: Implementation of an automated process for a continuous *Limnospira* harvesting and the recycling of the culture medium for space applications
- An automated two step separation process
 - Biomass harvesting unit (BHU)
 - Medium filtration unit (MFU)
- Results
 - Batch mode: good results
 - Continuous mode: good separation performance but continuous operation to be optimised at BHU level
- Future work
 - Characterisation of the strains and culture properties
 - Optimisation of the filter unit (BHU) to prevent cake formation

HILL BEAM

www.melissafoundation.org

Follow us
f in Y D

THANK YOU.

Céline Coene QinetiQ celine.coene@qinetiq.be Jordan Tallec GEPEA/Capacités jordan.tallec@capacites.fr

beyond gravity

ENGINSOFT

QINETIQ

