

DEVELOPMENT OF INNOVATIVE PROCESSES FOR THE INDUSTRIAL CULTIVATION OF HIGH ADDED-VALUE PLANTS IN A VERTICAL FARMING PILOT SYSTEM

What do we do?

prof. Matteo Ballottari

(reach out to him at Melissa conference)

Higher plants

Tobacco

<u>Microalgae</u>

Plants for food or CO2 capture SS-S Start End Easy regeneration (14 days) 447plants/mg 247plants/mg 147plants/mg

Basil

Tobacco

Fast growth and regeneration of hydroponically grown plants

Increase of environmental [CO2] allowed to achieve higher biomass yield (lettuce >100kg/m²/Y; basil >100kg/m²/Y; tobacco >200kg/m²/Y)

M Edges S A

Plants for pharma

2

Spraying of viral vectors to produce pharmaproteins from hydroponic plants

5Ws for Lean Farming

5 W'S PRINCIPLE:

- ► WHAT IS NEEDED,
- ► WHEN IS NEEDED,
- ▶ WHERE IS NEEDED,
- WITHOUT WASTE

Without Waste? Valorization by microalgae

Hydroponic solution at the end of a growth cycle still contains nutrient salts

Microalgae can <u>consume residual</u> <u>salts producing useful biomass</u> (superfood, plant biostimulant)

Proof of concept: growth of Chlorella in hydroponic wastes

Day

0

Day

7

FRESH BASIL TOBACCO WASTES TAP SOLUTION WASTES

Microalgae grown in used hydroponic media reached <u>stationary phase earlier</u> than cells cultivated in fresh nutrient solution

Consumption of residual nutrients by microalgae

	PO ₄ ³⁻ (mg/L)			NO ₃ - (mg/L)		
	Before algae	After algae	Reduction (%)	Before algae	After algae	Reduction (%)
Fresh solution	130	25	81%	1098	80	93%
Basil wastes	92	18	80%	1186	350	70%
Tobacco wastes	130	9	93%	1018	306	70%

<u>Most part of the residual</u> nutrients were consumed in <u>just 7 days</u>

Synechococcus PCC 11901: a promising strain for wastes valorization

COMMUNICATIONS BIOLOGY

May 2020

Check for updates

https://doi.org/10.1038/s42003-020-0910-8 OPEN

Newly discovered *Synechococcus* sp. PCC 11901 is a robust cyanobacterial strain for high biomass production

Artur Włodarczyk^{1,3™}, Tiago Toscano Selão ^{0,1,4}, Birgitta Norling¹ & Peter J. Nixon ⁰ ^{1,2™}

- Biosafety level 1 organism
- short doubling time of ≈2 1/2 hours
- grows at high light and in a wide range of salinities
- accumulates up to ≈33 g(dcw)/L
- naturally transformable

Robust and quick growth

Day 0

Day 1

Day 3

Day 5

Day 7

Tested lights

1200 μE (left) 1600 μE (center) 2000 μE (right)

Temperature

Bubbling

3% CO₂

35°C

1 ml of microalgal **PHOTOAUTOTROPHIC** colture

More than 15g/L in a week!

Synthesis of high-value compounds

Cyanobacteria naturally accumulate Zeaxanthin and b-carotene

HIGH POTENTIAL AS PLATFORMS FOR ASTAXANTHIN SYNTHESIS

Engineering of Synechococcus

smR

crtZ

acsA us

Cr-bKT

acsA ds

Growth in photobioreactor

Astaxanthin makes cells growing faster (PATENT PENDING)

Engineered strain has been successfully cultivated in 200L non-sterile media

Conclusions

 Availability of an automated indoor-system to produce 1) what is needed and 2) where is needed

 Potential of microalgae to achieve an hydroponic cultivation <u>without waste</u>

• Full exploitation of new highly-performing microalgal strain

Acknowledgements

Department of Biotechnology, University of Verona

https://onoexponentialfarming.com/

Santa Maria di Zevio, Verona, Italy

Prof. Matteo Ballottari Kristina Ljumovic Anna Baietta

Cariverona (funding)

Thomas Ambrosi Simone Zecchinato Lorenzo Girelli Matteo Castioni