

OPTIMIZING PHOSPHORUS REMOVAL FOR MUNICIPAL WASTEWATER POST-TREATMENT WITH *Chlorella vulgaris*.

RIGA TECHNICAL

Aigars Lavrinovičs

PLOJECHNOLOG

Toulouse, 10.11.2022

The background

#eutrophication #phosphorus #wastewater $PO_4 > 0.1 \text{ mg L}^{-1} \rightarrow \text{Algal blooms}$

The background

SMALL WWTPs (<2000 PE)

Appropriate phosphorus reduction Directive 91/271/EEC P-PO₄ in effluent >10 mg L⁻¹

POST-TREATMENT

Chemical precipitation

High costs, excess chemical sludge

MICROALGAE

Nature friendly alternative Photosynthetic O_2 – no aeration Atmospheric CO_2 capture Nutrient (incl. PO_4) uptake Micropollutant removal Valuable biomass

The background

MANIPULATION WITH P-STRESS

POSSIBLE COST RECOVERY AND PROFIT

Enhanced P uptake Valuable molecule synthesis

The experiment

Batch setups

		Initial phosphate concentration (P), mg P-PO ₄ L ⁻¹		
		22	12	5.5
Initial biomass concentration (B), g DW L ⁻¹	0.2	1P+1B	1/2P+1B	1/4P+1B
	0.6	1P+2B	1/2P+2B	1/4P+2B
	1.5	1P+3B	1/2P+3B	1/4P+3B

P-starv. period: Ref. 1 day 4 days 7 days 10 days

P-starv. period: 📕 Ref. 📃 1 day 📕 4 days 📕 7 days 📕 10 days

P-starv. period: Ref. 1 day 4 days 7 days 10 days

P-starv. period: 📕 Ref. 📕 1 day 📕 4 days 📕 7 days 📕 10 days

Optimization

WW treatment in a sequenced batch PBR

	Biomass growth rate, d ⁻¹	Specific PO₄ removal rate, mg g DW h ⁻¹	Polyphosphate accumulation rate, d ⁻¹	Protein productivity, mg g DW d ⁻¹
Reference (n = 4)	0.072 ± 0.016	0.279 ± 0.134	0.280 ± 0.066	1.682 ± 0.210
P-starved (n = 5)	0.110 ± 0.024	0.563 ± 0.082	0.666 ± 0.063	1.031 ± 0.365

- C. vulgaris is capable of **enhanced phosphate removal** from wastewater after its biomass **exposure** to **phosphorus deficiency** conditions.
- Main drivers depletion of cellular P reserves and activation of P transporters.
- The effect biomass P-starvation is further supported by **lower initial biomass concentration** which allows higher **light availability** and increases cellular activity.
- The initial **phosphate concentration** had a **lesser impact** on the overall C. *vulgaris* biochemical performance.
- Majority of polyphosphate is utilized for cell metabolite synthesis.
- Model suggestions for optimum initial conditions show that biomass exposure to P deficiency for one day is enough to sustain a rapid phosphate removal and polyphosphate accumulation.
- Biomass P-starvation a strategy for improved algae-based municipal wastewater post-treatment?

- Experimental pilot system for municipal WW post-treatment
 - 60 L
 - Microalgae Pstarvation
 - Automated
- Municipal WWTP (PE <10000)

Lavrinovičs, A.; Mežule, L.; Cacivkins, P.; Juhna, T. **Optimizing Phosphorus Removal for Municipal Wastewater Post-Treatment with Chlorella vulgaris.** *Journal of Environmental Management*, 2022, 324, 116313.

Grant by Latvian Council of Science: Municipal wastewater treatment using sequenced-batch photobioreactor technology LZP-2019/1-0271

Latvian Council of Science

UNIL | Université de Lausanne

THANK YOU.

Aigars Lavrinovičs

aigars.lavrinovics@rtu.lv www.wrebl.rtu.lv

www.melissafoundation.org

Follow us on social networks

