

The assessment of the physiology and the biochemistry of microalgae thru noninvasive approaches offers new perspectives for their monitoring in PBRs







- pubmed from 1925 to 2020
- key words : "monitoring or control" and "bioprocess or fermentation"
- 576 papers





- pubmed from 1925 to 2020
- key words : "monitoring or control" and "bioprocess or fermentation"
- 576 papers

#### A matter of history



S

Application to Bioprocesse



Conception

#### A matter of history with different time lags





Conception

Φ Bioprocess Application to

S

#### Monitoring components of bioprocesses





### Monitoring components of bioprocesses





















### Non-invasive approaches ... spectroscopy





Raman Spectroscopy

#### Non-invasive approaches ... spectroscopy





## Non-invasive approaches ... spectroscopy





Radiowave spectroscopies to monitor lipid accumulation in oleaginous microalgae

#### NMR spectroscopy on entire microalgae





Magnet - Normally Superconducting.

Frequency generator Creates an alternating current that induces B<sub>1</sub>.

Detector

## NMR recent technological breakthrough

magritek



1.0

0.5

High field spectrometer 700 MHz



#### Low field spectrometer 43 MHz



**Residual water** 

saturated lipids

## NMR spectra informations interpretation





- Non-destructive, reproducible
- No lipid derivatization
- Only one internal standard (no lipid standards needed)
  - quantitative NMR approaches:
  - 1D <sup>1</sup>H NMR
  - 1D <sup>13</sup>C NMR
  - Quantitative 2D NMR

#### <sup>1</sup>H NMR





- Highly overlapped <sup>1</sup>H NMR
- Baseline distorded

#### Accessible information:

- concentration of total fatty chains
- concentration of unstaurated fatty chains
- triglyceride ratio
- $\omega$ -3 ratio
- low accuracy
- fast

#### <sup>13</sup>C NMR





- much more resolved spectrum
- more accurate
- more information
- less sensitive

#### Accessible information:

- concentration of total fatty chains
- concentration of unsaturated fatty chains
- triglyceride ratio

• • •

-  $\omega$ -3,  $\omega$ -6,  $\omega$ -7,  $\omega$ -9 ratios





#### <sup>1</sup>H NMR quantification

| Concentration (mmol.L <sup>-1</sup> ) | Starved ? | Fatty chains | % Saturated | % Triglyceride |
|---------------------------------------|-----------|--------------|-------------|----------------|
| PK 61e-30                             | Yes       | 42           | 28          | 54             |
| PK 61e-20                             | Yes       | 24           | 44          | 46             |
| РК 62е                                | Yes       | 46           | 29          | 67             |
| NGSCe                                 | Yes       | 102          | 41          | 81             |
| РК 59е-А                              | No        | 12           | 68          | -              |
| РК 59е-В                              | No        | 15           | 50          | -              |
| РК 50е-Н                              | No        | 11           | 44          | -              |
| РК 33е                                | No        | 13           | 16          | -              |

#### <sup>13</sup>C NMR quantification

| Concentration (mmol.L-1) | Fatty chains #1 | Fatty chains #2 | Fatty chains #3 | Omega-3 | Omega-6 | Omega-7 | Omega-9 | Unsaturated |
|--------------------------|-----------------|-----------------|-----------------|---------|---------|---------|---------|-------------|
| NGSCe                    | 135             | 140             | 134             | 10      | 19,1    | 25      | 22      | 68,7        |
| PK60e                    | 126             | 163             | 131             | 51,7    | 21,6    | -       | 0,5     | 73,6        |
| PK61e-30                 | 72              | 76,6            | 69,3            | 19      | 16,2    | -       | 4,4     | 36,9        |

## Benchtop NMR?



#### Improve NMR accessibility

reduced size

transportable

no cryogenic liquid

low cost



Lower sensitivity and resolution

Prototype : gradient coil

Advanced solvent suppression pulse sequences UltraFast NMR DOSY NMR



Benchtop NMR used for reaction monitoring

## On line monitoring - water signal





- Need to remove water peak
- W5 provides the best water peak reduction



## On line monitoring - matrix effect





- Need of flow measurements
- Intracellular lipids give rise to large peaks
- the main one is still visible at 43 MHz, used to monitor the lipid production



## On line monitoring - coupling PBR/NMR



- Microalgae cultivation system
- Bypass loop (11 mL)
- Online analysis
- Flow rate 2 mL.min<sup>-1</sup>
- One spectrum per hour









#### On line monitoring - the raw data





#### On line monitoring - results









#### More details in • **CHEMPHYS**CHEM ★ ChemPubSoc DOI: 10.1002/cphc.201801116 Articles Received: 26 October 2018 Revised: 17 December 2018 Accepted: 19 December 2018 DOI: 10.1002/mrc.4821 WILEY SPECIAL ISSUE MINI-REVIEW Highly Resolved Pure-Shift Spectra on a Compact NMR Spectrometer Benchtop NMR for the monitoring of bioprocesses Thomas Castaing-Cordier, <sup>[a]</sup> Dylan Bouillaud, <sup>[a]</sup> Paul Bowyer, <sup>[b]</sup> Olivier Goncalves, <sup>[c]</sup> Patrick Giraudeau,\*<sup>[a, d]</sup> and Jonathan Farjon\*<sup>[a]</sup> Dylan Bouillaud<sup>1,2</sup> | Jonathan Farjon<sup>1</sup> 💿 | Olivier Gonçalves<sup>2</sup> 💿 | Patrick Giraudeau<sup>1,3</sup> 💿 Process Biochemistry xxx (xxxx) xxx-xxx Algal Research xxx (xxxx) xxx-xxx Contents lists available at ScienceDirect Contents lists available at ScienceDirect Algal Research **Process Biochemistry** journal homepage: http://ees.elsevier.com journal homepage: http://ees.elsevier.com Benchtop flow NMR spectroscopy as an online device for the in vivo monitoring of lipid accumulation in microalgae Using benchtop NMR spectroscopy as an online non-invasive in vivo lipid sensor for Dylan Bouillaud<sup>a,b</sup>, Vladimir Heredia<sup>b</sup>, Thomas Castaing-Cordier<sup>a</sup>, Delphine Drouin<sup>b</sup>, Olivier Gonçalves<sup>b</sup>, microalgae cultivated in photobioreactors Jonathan Farjon<sup>a,\*</sup>, Patrick Giraudeau<sup>a,c</sup> Dylan Bouillaud<sup>a,b</sup>, Delphine Drouin<sup>b</sup>, Benoît Charrier<sup>a</sup>, Corentin Jacquemmoz<sup>a</sup>, Jonathan Farjon<sup>a</sup>, Patrick Giraudeau<sup>a</sup>, Olivier Goncalves<sup>b,\*</sup> <sup>a</sup> Université de Nantes, CEISAM, UMR CNRS 6230, BP 92208, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France <sup>b</sup> Université de Nantes, GEPEA, UMR CNRS 6144, 37 boulevard de l'Université, 44600 Saint-Nazaire Cedex, France

#### NMR spectroscopy

## Very promising...



#### High-field spectrometer

- Assignment improvements
- Analytical specifications determination by comparison with reference techniques
- Approaches comparison

#### Benchtop spectrometer

- Relative quantitative data compared with reference techniques
- Biological interpretation
- Coupling with specific cultivations
   biological information



High-field spectrometer

- sensitivity improvement
- absolute quantification

Benchtop spectrometer

- sensitivity improvment
- sensitivity to temperature

water signal suppression

- increase the force field





- New spectrometric multiparametric sensors
- Very promising
- Still needing improvment
  - robsutness
    - matrix effect
    - "growth stages" (physiology)
  - semi quantitative
  - RTO



#### Acknowledgements







www.alaosolis.com

Olivier.Goncalves@univ-nantes.fr



FTIR spectra of Chlorella vulgaris

FTIR Principle

Baker et al. 2014

Infrared spectroscopy for PBR monitoring



• Water sensitive : off-line and need to dry the sample







• Molecular probing approach - SCN<sup>-</sup>

Bioprocess Biosyst Eng (2014) 37:2371–2380 DOI 10.1007/s00449-014-1215-4

**ORIGINAL PAPER** 

Influence of physical and chemical properties of HTSXT-FTIR samples on the quality of prediction models developed to determine absolute concentrations of total proteins, carbohydrates and triglycerides: a preliminary study on the determination of their absolute concentrations in fresh microalgal biomass

Esteban Serrano León · Rémy Coat · Benjamin Moutel · Jérémy Pruvost · Jack Legrand · Olivier Gonçalves



• Wave number shifts



Influence of the sampling method



• Wave number shifts - hydrogen bonding network



Influence of the sampling method



• Wave number shifts - hydrogen bonding network



Influence on the error of prediction



 Strong influence of the sampling method thru molecular probing approach SCN<sup>-</sup>



## Infrared spectroscopy for PBR monitoring

- Real conditions
  - Nannochloropsis oculata Airlift PBR (5 L)
  - Filtered sea water (0.2 µm)
  - Conway 3N3P medium
  - Light: 110 µmol/m²/s
- Model construction and test
  - Progressive starvation, optimize dynamical range of the intracellular TL (3N3P with 3P-N)
  - Calibration, max concentration : 0.4 g/L
  - Test, max concentration : 1.2 g/L
- Off-line monitoring FTIR/GCFID
  - 30 mL sampled (centri, washed, NB cells, DW, pigments)
  - GCFID (TL-FA, 5 replicates)
  - FTIR (1µL deposit 384 wells plate , 5 replicates)





#### Infrared spectra on fresh cells





# 

### Infrared spectra on fresh cells : heterogeneity



#### Monitoring results



• From 10% to 60% lipids DW ; 50 data points with GCFID, 50 spectra with FTIR



#### Performances of the multivariate model



|                     | Pre-processing | Spectral region (cm⁻ ¹)  | RMSE (CV and P) | Number of PLS components | R <sup>2</sup> (%) |
|---------------------|----------------|--------------------------|-----------------|--------------------------|--------------------|
| Cross validation    | None           | 1,838–1,477<br>1,118–758 | 1.29            | 6                        | 99.66              |
| External validation | None           | 1,838–1,477<br>1,118–758 | 1.81            | 7                        | 99.38              |

Table 1 PLS-R quality parameters for cross and test set validation for the selected model

 $R^2$  is the coefficient of determination

RMSECV root mean square error of cross validation, RMSEP root mean square error of prediction for the external validation



#### Robustness of the multivariate model







- Small volume sample (1 mL of a typical PBR culture)
- Fast (within 30 minutes)
- Accurate (as accurate as the reference method)
- Robust (physiological independant)
- High-throughput (up to 300 samples automatically)
- Can be inserted after your cells washing and counting protocol steps

Bioprocess Biosyst Eng (2014) 37:2175–2187 DOI 10.1007/s00449-014-1194-5

ORIGINAL PAPER

Unravelling the matrix effect of fresh sampled cells for in vivo unbiased FTIR determination of the absolute concentration of total lipid content of microalgae

Rémy Coat · Valeria Montalescot · Esteban Serrano León · Delphine Kucma · Candice Perrier · Sébastien Jubeau · Gérald Thouand · Jack Legrand · Jérémy Pruvost · Olivier Gonçalves



Diesalg (2012 - 2015)



- Microalgae dependent (error up to 150% for *C. reinhardtii, C. kessleri and N. oleoabundans*)
- Semi quantitative still interresting
- Remote IR probe (ATR) ?

   WATER contribution?
   Automatized deposit and dry steps?
   Bypass on the PBR?
   Matrix effect?
   EX SITU



• Raman for IN SITU?

#### Raman spectroscopy







Raman shift cm<sup>-1</sup>

Raman effect

Raman spectra of Chlorella vulgaris (785 nm)

#### Raman spectroscopy

Carbohydrates

Nucleic acids

Pigments

Proteins and or Lipids



Raman shift cm<sup>-1</sup>

Raman spectra of Chlorella vulgaris (785 nm)

Raman spectroscopy for PBR monitoring



• Water non-sensitive : on-line possible but still need to dry the sample on gold surface to understand the effect of the laser beam power on the cells



Microspectrometer Bruker Senterra - 785 nm



Spectrometer with optical fiber *Renishaw RA100 - 532 nm* 



- Need to prepare a bank of spectra during the microalgae growth in PBR (off line)
- 3000 spectra and 16 days of growth in PBR

| <u>Step 1</u>                 | <u>Step 2</u>            | <u>Step 3</u>                                               | <u>Step 4</u>         |
|-------------------------------|--------------------------|-------------------------------------------------------------|-----------------------|
| Robustess                     | Biologicical variability | Experimental variability                                    | Data acquisition      |
| Photiobioreactors triplicates | Two samples by reactor   | Two deposits by sample ( <i>Chlamydomonas reinhardtii</i> ) | 14 spectra by deposit |
|                               |                          |                                                             |                       |

#### Raman spectra are growth dependant







#### Raman spectra are growth dependant





#### Raman spectra are growth dependant



| Raman shift         | Main attribution                                                     |
|---------------------|----------------------------------------------------------------------|
| (cm <sup>-1</sup> ) |                                                                      |
|                     |                                                                      |
| 517                 | Polysaccharides δ(C-H <sub>2</sub> ), δ(C-OH) [58]                   |
| 600 - 800           | DNA and RNA bases (ring breathing) [58]                              |
| 744                 | Carbohydrates, chlorophyll a $\delta$ (H-C-O), $\delta$ (N-C-C) [28] |
| 915                 | Chlorophyll a δ(N-C-C), δ(C-C-C) [22]                                |
| 988                 | Chlorophyll a δ(C-H <sub>3</sub> ) [22]                              |
| 1150                | Carotenoid δ(C-C), δ(C-H) [22,57,58]                                 |
| 1186                | Amino acids leucine, phenylalanine,                                  |
|                     | chlorophyll a δ(C-H), v(N-C)[22]                                     |
| 1325                | Chlorophyll a v(C-N), δ(C-H) [22]                                    |
| 1523                | Carotenoid v(C=C) [22,57,60]                                         |
| 1656                | Lipid, amide I v(C=C) cis [28,31,57]                                 |
| 1750                | Lipid v(C=O) [26,31]                                                 |





- Small volume sample (0,5 mL of a typical PBR culture)
- Fast (within few minutes)
- Accurate
- More details in





Fast non-invasive monitoring of microalgal physiological stage in photobioreactors through Raman spectroscopy



Christopher Lieutaud<sup>a</sup>, Ali Assaf<sup>a</sup>, Olivier Gonçalves<sup>b</sup>, Gaëtane Wielgosz-Collin<sup>c</sup>, Gérald Thouand<sup>a,\*</sup>



• Possible to measure lipids for *P. kesslerii* at 532 nm, 5 mW, 3 sec acquisition time, on gold surface



#### Signal loss when working on line





Signal loss needs parameters optimisation

- Optimisation of time and laser power
- Focal point of the laser and the cells in the PBRs



Laser power 40 mW 80 mW







Turbidity

1 log 2 log 3 log









• Optimisation is growth stage dependant







• Optimisation is growth stage dependant





## First proof of concept







#### Online Raman spectra were phases dependant





Raman shift (cm<sup>-1</sup>)



Lipid production (J28-J33)

**Stationnary** (J10-J17)

#### Very promising...

- On line measurements are possible
- Lipids, pigments are easily detectable
- Semiquantitative





- Very dependent on the bank of spectra
- Developments of new probes, with enhanced features











**Orama** (2018 - 2022)

- Matrix effect?
- What about control strategies? RTO?
- And what if NMR new technological ruptur could bring something ?

