

REBUS-CYANOBACTERIA: The use of the desiccation-, radiation-tolerant cyanobacterium *Chroococcidiopsis* sp. CCMEE 029 for *in situ* resource utilization on the Moon and Mars

> Daniela Billi and Beatriz Gallego Fernandez University of Rome Tor Vergata Department of Biology Rome, Italy

The aim: linking *in-situ* resources to life support systems using desert cyanobacteria

Mars regolith analog

Lunar regolith analog

Desert cyanobacteria

Cyanobacterial lysate-based medium as feedstock/fertilizer

Bacteria

Microgreens

2

The desert strain *Chroococcidiopsis* sp. CCMEE 029 was selected because :

- it is desiccation and radiation tolerant
- It survives in the dried state under space and Mars-like conditions
- Its genome sequence has been sequenced
- It repairs efficiently DNA damage accumulated under space or Mars-like conditions

scientific reports

OPEN Absence of increased genomic variants in the cyanobacterium *Chroococcidiopsis* exposed to Mars-like conditions outside the space station

Alessandro Napoli^{1,2,5}, Diego Micheletti^{3,5}, Massimo Pindo³, Simone Larger³, Alessandro Cestaro³, Jean-Pierre de Vera⁴ & Daniela Billi¹²³

Features relevant when moving an experimental approach form Earth to space

Earth Desiccation of cyanobacteria

Moon or Mars

Rehydration, damage repair and exploitation of cyanobacterium-based technologies for ISRU on the Moon or on Mars

A feature relevant for ISRU on Mars is *Chroococcidiopsis* resistance to perchlorate ions

International Journal of Astrobiology

Exploiting a perchlorate-tolerant desert cyanobacterium to support bacterial growth for in situ resource utilization on Mars

Daniela Billi¹ ⁽ⁱ⁾, Beatriz Gallego Fernandez¹, Claudia Fagliarone¹, Salvatore Chiavarini² and Lynn Justine Rothschild³

Relevant *Chroococcidiopsis*'s features for ISRU on Mars and Moon are:

- capability of using Martian and Lunar regolith simulants as nutrient source, supplemented with NaNO₃ (Fig. A)
- Lysate suitability as feedstock for *E. coli* (Fig. B)

Lunar regolith analog

Relevant Chroococcidiopsis's features for ISRU on Mars and Moon are:

- capability of using human synthetic urine (10 mM urea) as nitrogen source (Fig. A)
- lysate suitability as feedstock for *E. coli* (Fig. B)

Proof – of – concept in

linking in-situ resources to life support systems using desert cyanobacteria

Mars regolith analog supplemented with human synthetic urine

Lunar regolith analog supplemented with human synthetic urine

Chroococcidiopsis sp. 029

Lysate used as feedstock

R

Bacteria

THANK YOU.

Daniela Billi billi@uniroma2.it

www.melissafoundation.org

Follow us on social networks

f in 💙 🖸 🕑