

Conceptual design of a life support system for a Mars Transit Vehicle

Project ISAE-Supaero – ESA

(Blandine Gorce, Lucien Garnier, Eliott Afuera, Hugo Ssi Kai, Pierre-Yves Schini, Alix Lefèvre)

I- Context

•

•

2

Ö

۲

0

I- Context Analysis (1)

Crewed space missions \rightarrow the challenges:

- Space vehicle
- Instruments reliability
- Wastes reusability

Needs:

ECLSS (Environment Controlled Life Support System)

ightarrow As autonomous as possible

Space Station Regenerative ECLSS Flow Diagram (Baseline and Scarring)

Project MELiSSA (Micro-Ecological Life Support System Alternative)

- Transform a spaceship into a closed ecosystem
- Allow survival of a crew without regular reloading of resources from Earth.

Project of our team: preliminary conceptual design of a life support system

Mission towards Mars in the following conditions:

I- Context Analysis (3)

Focus of the closed loop: autonomy

0%

Resources = only from launch loads

Drawbacks = Heavy load at the start \leftarrow Solution studied \rightarrow

Challenges:

- Recycled O2 > 75%
- Recycled water > 98%

Evaluation of the solution: ALiSSE criteria 100%

Resources = only produced onboard

Drawbacks = Technologically impossible for now

I- State of the art (1)

Systems and Technology Demonstrators used onboard ISS:

ACLS	Production of O2 from CO2	Atmosphere
ANITA	Cabin atmosphere analysis	Atmosphere
MIDASS	Verify cabin air quality (contaminations)	Atmosphere
OGA	Produce O2 from water	Atmosphere

UPA	Création d'eau distillée à partir d'urine pré-traitée	Water
WPA	Produce potable water from distilled and condensed water	Water
WRS	UPA + WPA	Wate
BPA	Treats brine	Water

In space additive manufacturing	3D impression	Maintenance
manufacturing		

7

I- State of the art (2)

Technologies developed by MELiSSA:

BIORAT 1	Regeneration of part of the ISS cabin air by capturing carbon dioxide (CO2) and releasing back oxygen (O2) and food complement (proteins)	Food and atmosphere
BIORAT 2	Urine nitrification	Water
PFPU	Tubers production	Food
BELLISSIMA Waste recycling (feaces, paper, food)		Wastes

II- Methodology

٠

European Space Agency

MELSES A II- Needs and technical requirements

Needs:

Requirements:

- Derived directly from the needs and crucial step.
- Have to be fulfilled!
- Separated between **design** and functional requirements.

Examples :

- Habitat volume of 200m³
- Possibility to shower regularly
- Assure quality of water/air/food
- Treat at least 4.18 kg of water per day
- Be capable to grow plants

10

Advanced Life Support System Evaluation

EFFICIENCYMASSEfficiency of the ECLSS: $\frac{r_p(X) + r_c(X)}{p(X)}$ Computed by comparison
to ISS massRecycling rate of the ECLSS: $1 - \frac{w_p(X) + w_c(X)}{r_p(X) + r_c(X)}$ SAFETY/SECURITY
Qualitative evaluation

POWER Computed by comparison to ISS power consumption $S_{power} = -0.46 P_c + 20$

II- Sub-systems definition

- Water management
- Food management
- Atmosphere management
- Wastes management

III- Results and discussion

•

III- Subsystems' analysis: Water (1)

Objective: produce potable water from liquid wastes fluxes.

- $\eta_{rec} = 0.91 \ (< 98\% \ !)$
- Low estimated efficiency of the WPA (88%)
- Continuous production of wastes (WPA and BPA)
- Yellow water pre-treatment

III- Subsystems' analysis: Atmosphere (2) eesa

Objective: produce the oxygen needed and absorb associated carbon dioxide emissions.

- Important water consumption of the OGA
- Continuous production of wastes through water treatment in the WPA
- Production of solid carbon in the BOSCH reaction
- Surplus of dihydrogen in BOSCH reaction

III- Subsystems' analysis: Wastes (3)

Objective: produce nutrients for the food loop from wastes.

- Production of CO2 and consumption of O2 in BIORAT2
- Continuous production of wastes to store
- Some wastes are not considered in this loop (no additive manufacturing, hygienic protection, clothes...)

III- Subsystems' analysis: Food (4)

Objective: Offer a source of edible biomass.

- Limited to 50% of the daily needs of the astronauts (possibility to stored at the beginning of the mission)
- Important water consumption by PFPU and BIORAT 1.
- Continuous production of wastes to store.

Cesa

		9	
Sol	id exchanges		
#	g/day/CM		
1	2210		
2	490		
3	123		
4	123		
5	1210		
6	490		
7	60.5	1	
8	400		
9	90		
10	261.46	1	
11	46.14		
12	38	1	
13	66.5	1	
14	62.8		
15	264.2		
Liq	uid exchanges	1	
#	g/day/CM	#	g/day/CM
1	2590	16	981.8
2	1500	17	391 500
3	2000	18	864
4	1900	19	1000
5	1862	20	1055.7
6	279	21	1170
7	273	22	1170
8	1583	23	1333
9	2240	24	46.9
10	5366	25	89.3

1125

393 900

3600 587 200

2400

11

1213

14

15

M ELISS A

104.8

2640

26

27

	Ga	s exchanges
	#	g/day/CM
	1	1000
	2	1200
	3	196 900
	4	352.4
	5	757.2
	6	74.4
	7	170.54
	8	245.6
	9	83.5
	10	10
	11	195 700
	12	1200
	13	106.7
	14	3.03
	15	529
•		
/1	Was	te exchanges
	11	m/dow/CM

Waste exchanges		
#	g/day/CM	
1	60	
2	731.72	
3	144.25	
4	140	
5	74.65	

III-ALISSE evaluation (1)

European Space Agency

Mass:

- Total mass of the system: 4842 kg
- Most of the mass comes from BIORAT1 and PFPU subsystems
- Balanced with the loaded mass

Crew time:

Both repetitive tasks and one time operation taken into account

Safety/Security:

- High impact of the Technology Readiness Level (TRL)
- Unsafety induced by the utilization of PFPU for most of the fresh food (Efficiency favored)

European Space Agency

- Total score of 4.9
- Computed by estimation and scaling from existing demonstrator

- **Efficiency**:
- Oxygen and hydrogen recycling rate
- Criteria that was given the advantage in many compromises

The most optimized criteria is efficiency, however there are still a lot of improvements to do to make it a light and safe system.

III- ALISSE evaluation (2)

Optimization possibilities:

- Improvement of technology efficiency
- Optimization of requirements and needs
- Refine hypothesis
- Improve ALISSE criteria definition

UNIL | Université de Lausanne

THANK YOU.

Gorce Blandine Blandine.Gorce@esa.int

www.melissafoundation.org

Follow us on social networks

