

•

SPACESHIP FR & MELISSA: HARMONIZED ROADMAPS FOR REGENERATIVE LIFE SUPPORT SYSTEMS Session SYSTEM STUDIES 2/3 – 2022/10/09

cnes

•

•

Context
Objectives
Results
Conclusion and perspectives with MELiSSA

Context
Objectives
Results
Conclusion and perspectives with MELiSSA

M SPACESHIP FR – Context – Spaceships netw

LUNAR SOUTH POLE TARGET SITE

2020

M FIFE A SPACESHIP FR - Context - Scope for Exploration

GLOBAL EXPLORATION ROADMAP

Key Drivers

Subsystems in the international outpost

Food management system Autonomous Habitat - LISE **Digital & Supervision** 112 **Prospection tools** Optical/geology Robotic assistant - LORA

Context
Objectives
Results
Conclusion and perspectives with MELiSSA

M FIRS A SPACESHIP FR - Objectives

Context
Objectives
Results
Conclusion and perspectives with MELiSSA

M ENERGY A SPACESHIP FR - Roadmaps Comparison

TOPICS	MELISSA	SPACESHIP FR
Air Recycling & CO2 revalorization		
Food Production		
Grey Water Recycling		
Yellow Water Recycling		
Black Water Recycling		
Waste Recycling		
Biomaterials		
Process modelling, Simulation & Control		
Life Support Architecture for Future Missions		
Fire Management	Ø	
Flight Experiments		Ø

M FIRS A SPACESHIP FR - Topics selection

TOPICS	MELISSA	SPACESHIP FR
Air Recycling & CO2 revalorization		⊘
Food Production		
Grey Water Recycling		
Yellow Water Recycling		
Black Water Recycling		
Waste Recycling		
Biomaterials		
Process modelling, Simulation & Control		
Life Support Architecture for Future Missions		
Fire Management	lacksquare	
Flight Experiments		

M FIFE A SPACESHIP FR - Air Recycling and CO2 Valorisation

MELISSA

SpaceShip FR

Objective

CO2 removal and reprocessing + O2 generation

Technology

CIVa: Micro-algae photobioreactor (*Limnospira indica*)

Space TRL

CO2 trapping

Technology

Cryo-liquefaction

Space TRL

Objective

CO2 removal and reprocessing + O2 generation

Technology

CIVb: Higher plant growth chamber

Space TRL

Objective

CO2 trapping

Technology

Solid fibre

M LIVER A SPACESHIP FR - Air Recycling and CO2 Valorisation

2022 Activities: Study, assessment and test of solid fibers for H20 capture

- State of the art of adsorbent technologies for H2O then CO2
- Comparison of adsorbent
- Update of the test bench
- > Tests of different configurations / materials => excellent kinetics with fibers and no dust

Future Activities: Development of a functional breadboard to treat and valorise H2O and CO2

- Evaluation of the suitable shape for adsorbent
- > Design canisters (including the right proportion of adsorbent) for the requirement
- Develop and test a ground functional breadboard (test under vacuum)

M FINE A SPACESHIP FR – Food Production 1/2

MELISSA

SpaceShip FR

Objective

Protein production for human crew consumption

Technology

CIVa: Edible biomass cultivation in micro-algae photobioreactor (*Limnospira indica*)

Space TRL

Objective

Higher plants production for human crew consumption

Technology

CIVb: Higher plant cultivation in growth chamber

Space TRL

Objective

Protein prod. for human crew and aquaculture consumption

Technology

AstroPOU module: Edible biomass cultivation via heterotrophic fermentation in bioreactor (*Cupriavidus necator*)

Space TRL

Objective

Higher plants production for human crew consumption

Technology

Biomebox©: Higher plant cultivation in growth chamber

M FIRS A SPACESHIP FR - Food Production 2/2

MELiSSA SpaceShip FR

M SPACESHIP FR – Food Production perspectives

Toulouse Spaceship demonstrator : a first step towards spatialization of indoor farming technologies

M FIFE A SPACESHIP FR – Food Production perspectives

Next started studies and prototypes in 2022:

- Root vegetable production performance tests
- Mushrooms production prototype => new incomes for nutrition
- Mushrooms nursery prototype => grow mycelium

Next potential studies & Perspectives:

- Study the use of PHA substrate for germination
- > Study the use of pressure variation to produce interesting molecules (pharmaceutic interest)
- Develop a digital twin => anticipate failure modes
- Define a model-plant referential and typical culture protocols for crew alimentation => realization of cycles of tests to characterize them and build a database
- > Study the integration of water treatment system => recycle nutritive solutions
- > Study the effects of the air flux on the plant growth => optimize air circulation and thermal exchanges

M SPACESHIP FR - Yellow water recycling MELISSA Space S

SpaceShip FR

Objective

Transformation of urine in proper substrate for higher plants and micro-algae cultivation

Technology

CIII: Heterotrophic nitrifying bioreactor (*Nitrosomonas europaea*, *Nitrobacter winogradskyi*, *Comamonas testosteroni*)

Space TRL

Objective

Nitrogen gas recovery from urine to compensate for gas leakages in crewed habitat

Technology

Partial Nitritation/Anammox + Membrane Aerated Biofilm Reactor

Space TRL

Objective

Urine recycling for bacterial biomass cultivation

Technology

AstroPOU module: Heterotrophic fermentation in bioreactor (*Cupriavidus necator*)

Space TRL

Objective

Sanitation of drinking water removing persistent chemical and bacteriological polutant

Technology

Oxydo-reduction without additives thanks to photocatalyst & UV excitation

M SPACESHIP FR - Black water recycling

MELISSA

SpaceShip FR

Objective

Black water and human faeces recycling

Technology

CI: Thermophilic (55°C) anaerobic bacterial degradation. Inoculum coming from DRANCO (DRy ANaerobic COmposting) process.

Space TRL

Objective

Black water and human faeces recycling

Technology

Anaerobic digester module

M MELES A SPACESHIP FR - Waste Recycling 1/2

MELISSA

SpaceShip FR

Objective

Inedible organic waste recycling

Technology

CI: Thermophilic (55°C) anaerobic bacterial degradation. Inoculum coming from DRANCO (DRy ANaerobic COmposting) process.

Space TRL

Objective

Bioplastics recycling

Technology

Bio-degradation in controlled conditions and compatible with MELiSSA processes

Space TRL

Objective

Volatile Fatty Acids recycling

Technology

AstroPOU module: Heterotrophic fermentation (*Cupriavidus necator*)

Space TRL

Objective

Bioplastics recycling

Technology

PHA recycling for reuse in 3D-printer

M FIRS A SPACESHIP FR - Waste Recycling 2/2

MELiSSA SpaceShip FR

Objective	
Inorganic waste recycling	
Technology	
Compaction	
Space TRL	
TRL1	

M FIFE A SPACESHIP FR - Recycling perspectives

See Presentation "Assessing the Recycling Potential of Cupriavidus necator for Space Travel: Production of SCPs and PHAs from Organic Waste."

By Pierre JORIS - TBI Session Biomaterial 2/2 2022/11/10 At 13h30 Room 1

In 2022

Intensification and consolidation of the concept to reach TRL 4:

- Process optimization in terms of reactor monitoring and inlet composition
- Evaluation of the product quality
- > Evaluating the possibility to reduce or suppress Oxygen supply

Perspectives 2024

- Oxygen supply: Evaluation of the production of PHAs under limited or lack of oxygen. Impact on the quality of the polymers.
- Coupled production of unicellular proteins and nutraceuticals in C. necator: feasibility study, implementation, evaluation
- Scaling-up the AstroPOU process: Approaching real case situation; Demonstrator in the Spaceship Lab.

M FILES A SPACESHIP FR - Biomaterials

Objective
Packaging production
Technology
Non-edible biomass 3D printing
Space TRL

MELISSA

SpaceShip FR

Objective

Bioplastic production

Technology

AstroPOU module: Heterotrophic fermentation (*Cupriavidus* necator) + Bioplastic separator

Space TRL

See Presentation "Assessing the integration of a bioreactor producing SCPs and PHAs from organic waste into global environmental systems."

By Etienne PERRIN - CNES Session Biomaterial 1/2 2022/11/09 At 08h50 Room 1

Context
Objectives
Results
Conclusion and perspectives with MELiSSA

M ENERGY A SPACESHIP FR - Harmonized Roadmaps

TOPICS	MELISSA	SPACESHIP FR
Air Recycling & CO2 revalorization		⊘
Food Production		Ø
Grey Water Recycling		Ø
Yellow Water Recycling		
Black Water Recycling		
Waste Recycling		
Biomaterials		
Process modelling, Simulation & Control		
Life Support Architecture for Future Missions		
Fire Management	⊘	
Flight Experiments		Ø

M FILE A SPACESHIP FR - Collaboration perspectives

т	^	DI	CS
	w		

Grey Water Recycling	Investigate cloth washing technologies
Oldy Water Recycling	investigate cioth washing technologies

Yellow Water Recycling

Piggy-back on upcoming **CNES bed rest studies** to look at correlation between diet, microbiota and urine composition

Test MELiSSA recipe of synthetic urine composition on AstroPOU module

Black Water Recycling

Study on microbiota to better understand organic waste composition

Study the feasibility of **how Volatile Fatty Acids produced in MELiSSA** CI could be fed **into AstroPOU** fermentation module

Food Preparation

Investigate biomass transformation into recipe

Packaging

Investigate synergies on **biodegradable packaging** (CNES EcoPack Flight Technology Demonstrator) and **freshness packaging** (CNES Freshness Packaging Technology Demonstrator)

Radiations

PhD on radioprotection and DNA/RNA reconstruction

M FIRS A SPACESHIP FR – Acknowedgements

Alexis Paillet, <u>Alexis.Paillet@cnes.fr</u> CNES

Romain Charles, Romain.Charles@cnes.fr
MEDES

Chloé Audas, <u>Chloe.Audas@esa.int</u> European Space Agency

Christophe Lasseur, <u>Christophe.Lasseur@esa.int</u> European Space Agency

SPONSORS

2022 MELISSA CONFERENCE

8-9-10 NOVEMBER 2022

PARTNERS

THANK YOU.

Navarro Gregory - CNES gregory.navarro@cnes.fr +33 561 274 885

www.melissafoundation.org

Follow us on social networks

