

M ELESS A

Design of the MELiSSA loop control strategy

B. Thiron, P. Fiani, O. Gerbi, C. G. Dussap, L. Poulet, L. Poughon, L. Bucchieri, M. Gatti

CURRENT AND FUTURE WAYS TO CLOSED LIFE SUPPORT SYSTEMS

Context : MELiSSA loop

 MELiSSA loop : Degrade organic waste into food, water and oxygen for human

Context : Control strategy ?

Elaborate a flow control strategy :

To determine the choices for distributing the flows between the various entities of the MELiSSA loop.

- What to send?
- Where?
- When?
- Two goals:
 - 1) Ensure the crew survival
 - 2) Optimality

Degrees of freedom (1/2)

MELLES SA

Degrees of freedom 1st type : Choices in the flow distribution

Example for O2 distribution :

- How much from C4a/C4b?
- How much to C3/C5 ?

Degrees of freedom (2/2)

Degrees of freedom 2nd type : Choices in the chemical components addition

Example for N addition :

- The most efficient ?
- The most robust?

Elaboration of the control strategy

Models of the loop

Models of the loop

Scenario and requirements

- Life on Mars surface : 3 years mission
- Typical crew week schedule

Scenario and requirements

- 7 failure scenario (designed by ESA)
- Objective : study and compare the robustness of the different configurations

	ESA scenario proposal
1	"Crew is sick. Urine and faecal matter cannot be used for 1 week. Only CO_2 and grey water/humidity condensate can be used during that time"
2	"Ammonium sensor fails, ammonium concentration in C1 cannot be measured. Methane production cannot be inhibited"
<mark>3</mark>	C3 failure
<mark>5</mark>	Photobioreactor lighting in C4a can only reach 70% efficiency
6	Harvesting system in C4a harvests too much biomass, biomass production remains nominal.
7	Excess O ₂ in MELiSSA loop (e.g. sudden change of crew composition)
9	Protein stock on-board is decreasing. The MELiSSA loop shall provide 80% of the protein needs for the mission.

Evaluation criteria

At the loop level

Criteria	Expression
Autarky	P/R
Production cost	$(S_1 + S_2)/R = (W_1 + W_2)/R$
Resource intensity	$(C + S_2)/P$

At a compartment level

Criteria	Expression
Coverage	P/Mission
Efficiency	P/I

Example : configurations

- Food **Basic configuration** Food Crew Storage Faeces O₂ addition Water Urine Food Air + Water Air CO. Loop always contains Storage Food Water food & water storage Cabin Air Water Air + Air + 02 02 Air + CI 0. Biomass CIVa Non-CIVb edible Water + food $NH_3 +$ $CO_2 +$ Air + CO₂ VFAs **O**₂ CO Nitri bacteria CII CO_2 Water + CO_2 HNO3 + Water + CO. HNO3 + Air + O₂ CO2 Water + Waste NH3 + Water + CO₂ HNO3 + CIII CO₂ Waste Storage

Example : configurations

- MELLES SA
- Food Configuration 1 : Food Crew Storage Faeces C4 enrichment Water Urine Food Air + Water Air $HNO_3 \& H_2SO_4$ addition CO₂ Storage Food Water CO_2 addition Cabin Air Water Air + Air + 02 O_2 Air + CI 0. Biomass CIVa Non-CIVb edible Water + food $NH_3 +$ $CO_2 +$ Air + CO₂ VFAs CO Nitri bacteria CO_2 CII CO_2 Water + CO_2 HNO3 + Water + CO HNO3 + Air + O₂ CO2 Water + Waste NH3 + Water + CO₂ HNO3 + $HNO_3 \&$ CIII CO₂ H_2SO_4 Waste Storage

Example : configurations

- Food Configuration 2 : Food Crew Storage Faeces C4 enrichment Urine Food Water Air + CO₂ Water Air H₂SO₄ addition Storage Water CO_2 addition Cabin Air Water Air + C3 enrichment Air + 02 02 Air + CI 0. NH₃ & H₂SO₄ addition Biomass CIVa Non-CIVb edible Water + food $NH_3 +$ $CO_2 +$ Air + CO₂ VFAs CO Nitri bacteria CO_2 CII CO_2 Water + CO_2 HNO3 + Water + CO. HNO3 + Air + O₂ CO2 Water $NH_3 \&$ Waste NH3 + Water + CO₂ H_2SO_4 HNO3 + CIII CO, H_2SO_4 Waste Storage

HNO₃: 84,3 g/day CII H₂SO₄: 2,43 g/day HNO₃ : 3,16 g/day H₂SO₄ : 0,091 g/day Water + HNO₃ : 87,5 g/day HNO₃ + NH₃: 24,1 g/day Water + CO NH₃: 0,106 g/day Water H_2SO_4 : 2,57 g/day HNO₃ + NH3 + CO₂ CO2 Water + HNO3 H CIII Waste CO_2 Storage

O₂: 14,3 g/day

CIVa

Food

Storage

Water

Storage

Air +

0.

Air + O₂

CIVb

O₂ : 219 g/day

 O_2 : 864 g/day

Gas Tank

Air

02

Crew

Cabin Air

 O_2 : 84,8 g/day

O₂ : 716 g/day

CI

Results :

From loop

From

storage

Basic configuration

02

25%

75%

Food

13%

87%

Water

100%

0%

Example : results for basic configuration

Example : results for C4 enrichment

Example : results for C3 enrichment

Results:

Configuration 2 – C3 enrichment

	O2	Food	Water
From loop	100%	52%	98%
From			
storage	0%	48%	2%

Nitrates :

- 0 % from the liquid tank
- 100 % from CIII

Example : ALiSSE criteria results

M ELESS S A

Results :

Comparison of production cost

→ Chemical product addition more efficient ! (in term of production cost)

PRODUCTION COST FOR THE THREE STUDIED FLOW CONFIGURATIONS

Next steps

Thank you

SHERPA ENGINEEVING