

Specification process of a simulation platform for the MELiSSA project

Alexandre SOBAS MSc. Student

Dr. François CLUZEL Assistant Professor Dr. Franck MARLE Professor

Master Thesis

University Paris-Saclay, CentraleSupélec, Industrial Engineering Research Department (LGi) **In collaboration with ESA :** C. LASSEUR & C. AUDAS

Conference **MELISSA** 09/11/2022 2022

Specification process of a simulation platform for the MELiSSA project

- **1. Context** : Why MELiSSA needs a simulation platform ?
 - Existing work & Simulations needs
- 2. Audit : What are the needs and challenges ?
 - · Interviews & Audit synthesis
- **3. Literature review :** What can we learn from similar projects ? . LSS & Digital Tools for LSS
- 4. Gaps, proposals and perspectives : How can we improve the simulation specification process ?
 - · Simulation Request and Architecture

5. Synthesis & Conclusion

· Contributions & Next Steps

Context : Why MELiSSA needs a simulation platform ?

To better understand MELiSSA **performances**, especially in terms of **circularity**, we need a **global simulation platform**.

How can we specify this platform and extend it for all terrestrial systems in a circular economy perspective?

Extremely **complex closed loop** system, with many stakeholders

Context : Why MELiSSA needs a simulation platform ?

WHAT ALREADY EXISTS

Separate simulation models for each "Brick" with few interconnection between them and **different tools** (*Simulink, ProSim...*) Mainly **static**, no **control** laws

ALISSE (Advanced life support system evaluator)

Collects data from the simulation models, add **control laws** and output **7 metrics**. Very **specific** to MELiSSA, **complex to use** and does not cover the **entire** loop

ESA'S NEED

A dynamic simulator of the **entire MELiSSA Loop** :

- Compare diverse architectures /scenarios by computing their **circularity performance** (*Flows and Process*)
- Identify **limiting chemical components** (*What & When*) and the biological evolution
- Flexible : experts can add, remove and edit bricks
- Unique and interesting for every actors
- Standard Platform able to adapt to **any circular** economy systems, including terrestrial applications

Audit : What are the needs and challenges ? Interviews with 5 experts from different fields

Stakeholders and Needs Mapping Operational Analysis (Simplified)

CUSTOMERS /
UsersPROVIDERS /
DevelopersSector
CentraleSupélecUniversité
PARIS-SACLAY

Detailed mapping available on request

Stakeholders and Needs Mapping Overall architecture of the simulation platform (Simplified)

MELiSSA Conference 2022 - Sobas, Cluzel, Marle

09/11/2022

Audit Synthesis : What are the needs and challenges ?

Several projects and tools already exist:

- Building on **previous** work
- **Integrate** existing tools at the right level in the future platform

OSCAR ALISE VARSITY Various Integration of System Study

Multiple diverse stakeholders:

- Different **interests** and **objectives** (*Trade-off between precision / flexibility / useability*)
- **Various** domains and expertise (*Chemical engineering* / *Systems Engineering*/ *Control* / *CFD* / *LSS*)
- Specific Methods and **Tools**

Technical Challenges:

- Interface between the tools
- Dynamic closed loop : huge **stability** issues
- Adaptable to any circular economy systems, including terrestrial applications
- No similar commercial tool available

Human challenges:

- · Involve every stakeholders
- · Data Sharing

•

Literature review : What can we learn from similar projects ?

Definitions & References available on request

10

Literature review : What can we learn from similar projects ?

Space

09/11/2022

11

Literature review : Synthesis & Gap

Many LSS simulation platforms projects have failed in the past

- **Long-term programs** ≠ PhD projects
- **Technical complexity** of assembling numerous simulation models : diverse **methods and tools.**
- **Divergent expectations** and priorities between stakeholders.
- **Data sharing :** some actors may feel dispossessed of their work (*NASA Houston ELISSA example*).
- **Poor consideration of stakeholders' needs** during the specification phase: lack of interest at the end.

It is crucial to involve all stakeholders from the needs definition phase

Research gap in the field of **simulations specification and architecture**

- The **improvement** of existing **methods** can prevent MELiSSA from undergoing the same failures as similar projects
- Similar gap addressed by IRT SystemX (J.-P. Brunet et al., 2020; Sohier et al., 2019, 2021)

•

Gap : How to formalize simulation needs while ensuring traceability?

"Simulation Request" Process

- 1. Simulation **scope** & level of **detail** (*What part* ?)
- 2. Objective
- 3. **Quality, cost, and delivery** (fast or accurate?)
- 4. Test scenarios of the simulation
- 5. Data for simulation **calibration and validation**
- 6. Verification and validation **(V&V)** of the simulation

Results & Benefits

6

CentraleSupéleo

- Developed software tools to demonstrate their methods
- Linked system architecture (MBSE) with numerical simulations
- Formalizes the exchanges and requests between system and simulation architects
- Limits the loss of information and improve V&V
- Leverages past simulations

Gap : How to Support Simulation architecture ?

MIC : Model Identity Card (Göknur et al., 2015)

An Open-Source collaborative standard

- Simplify simulation models **specification**, **sharing** and **reusing**
- Standardized interfaces definition
- List **key information** for characterizing simulation models with an **XML format** (*software tool*)
- Helps to assemble multi-disciplinary, multi-actors
 & multi-domain simulation models
- Improve **traceability** with system requirements

Gap : How can we improve the simulation specification process ? **2 Different processes**

SET Level

Credible Simulation Process (Heinkel, 2021)

A method for the high-level project manager

Overview of an optimal sequential process for developing a simulation (roles, resources)

Proposal : Comparison of Simulation Specification Methods

Credible Simulation Process (2021)

- Useful for the manager to have an overview of an optimal sequential process
- Identify Roles, expertise, inputs, outputs required at each step

BUT

- Very **generic** / conceptual
- Requires **experience** to apply it

Simulation Request Process (2021)

- Detailed steps
- Strong traceability with system requirements, architecture and simulation needs
- Software Tooling

BUT

- Depends on custom tools
- Requires highly detailed System Architecture (MBSE preferred)

MIC : Model Identity Card (2020)

- Standardization of simulation architecture
- Improves connectivity between models (interface definition through XML)

BUT

- Requires a strong simulation
 expertise
- Must be filled in by the simulation architect in a **dedicated tool**

Difficult to apply fully in our academic context, but relevant for MELiSSA

Proposal : Creation of Simplified PowerPoint Templates Summarizes documents and interviews in a few slides (overview)

Credible Simulation Process

System× Simulation Request Process

MIC : Model Identity Card

	General Information	Integration	Content & Computation	Ports, internal variables, and parameters	Verification & Validation
	Name Biorat gas cycle madel	Software	Modelling choice	Ports	Test
	Description	Simulink VX	Explicative text Mode(I)(gchoice / Appothesis/	Variable Name, description, type, unit, default value, in/out, Validity	Method Desk Checking, Turing Test, Grandskal Comparisons
	Represents the gaz exchanges	File Format	iantes espatined in natural language	Domaio	
	juoz e uziwana piorat une	Required simulation tool Matia0	Formalization Model Field : Modeline choice	Port Name, description, port	Decumentation Testprocedure, Test results
ard	Owner UCA	Required compiler	explained in natural language		
intity C	Life cycle state	Required OS Windows	Time scale of the phenomenon : steady or transient	Internal Variable	Metric
Ide	Specification	Other SW requirements		Similar to ports	Name FideSity, accuracy
IC : Model	Version	Reference Hardware and nerformance	Behaviour Behaviour specification Documentation of the model	Group of Internal variables Similar to ports	Score Score obtained by the simulation model for a given
Σ	Version Date		Model Type		()
	Confidentiality	Characteristics of the reference hardware CPU, RAM, GPU	Discrete, continuous, Stachastic, Dynamic	Parameters Parameter	
			Default Solver	Similar to ports	
	Loome	(the time is takes to run the simulation mode(l/(the simulation time)	Solver name Embedded or not	Group of parameters Similar to ports	System×
			Step Size Ims		SET

Benefits

- Applicable to any complex systems: including MELiSSA and Circular Economy
- Allow stakeholders to compare methods and adapt them to their needs
- Optimize collaboration, needs & simulation architecture definition : "Top Down" approach
- Move Towards : standardization, connectivity, traceability, and digital continuity

Perspectives

- Customize the templates for Circular Economy features (budget) and indicators
- Application of the methods by the **experts**

- BUT : the simulation platform remains technically very complex (dynamic closed loop)
- This methodological support is only part of the answer

Synthesis & Conclusion

Proposals to ESA and stakeholders

State of the art

- Existing LSS/simulation tools
- · Criticalities & challenges

Mapping of the industrial audit

- · Interviews synthesis
- 3 layers: support communication and decision making
- · Gap identification

Comparison of 3 methods/tools to help specify the simulation platform and architecture

- Advantages/Limits
- Templates proposal
- Perspectives

Next Steps

Improve industrial audit

- Interview additional stakeholders (*MPP, THALES, EnginSoft, Circular Economy...*)
- Update the Mapping

Select with experts which methods could be applied

- Work with SETLevel & IRT SystemX to adapt their methods to the project (Supported by the templates)
- · Implement **Circular Economy** aspects
- Keep in mind the **technical limitations**

计目前常常常常

THANK YOU.

www.melissafoundation.org

Follow us f in Y D

Additional information available on request & in the Master Thesis report

Alexandre SOBAS MSc. Student alexandre.sobas @student-cs.fr

Dr. François CLUZEL Assistant Professor <u>francois.cluzel</u> @centralesupelec.fr

Dr. Franck MARLE Professor <u>franck.marle</u> @centralesupelec.fr