

A ROADMAP FOR FUTURE SYSTEM STUDIES Lessons Learned in VARSITY

Marco Gatti, EnginSoft Erik Mazzoleni, EnginSoft Lorenzo Bucchieri, EnginSoft

VARSITY project Motivation and objectives

Extract from Varsity SOW

"In the framework of the MELiSSA project, system studies are crucial at all levels of developments ... However, mechanistic models as well as predictive control have been demonstrated mainly at sub-units and within limited range of process behavior"

esa

European Space Agency

Extract from Varsity SOW

"In the framework of the MELiSSA project, system studies are crucial at all levels of developments ... However, mechanistic models as well as predictive control have been demonstrated mainly at sub-units and within limited range of process behavior"

VARSITY – Lessons learned #1

Mathematical models

• MRL - Assessment

VARSITY – Lesson Learned #1 Mathematical models

Model Readiness Level

(Table 5: Current status of models for the MELiSSA compartments: MRL Scale		
	System	MRL	Perimeter
Can we des	Bioreactor C1	2-4	Mass balance only
	Bioreactor C2	2-4	Mass balance only
	Bioreactor C3 - autotrophic	7	Dynamic-fixed bed-autotrophic Nitrification
Do we have	Bioreactor C3 - Urea	3-4	Dynamic-fixed bed-heterotrophic Nitrification
	Bioreactor C4a	8-9	Dynamic
	Bioreactor C4b	3-4	Mass Balance only
Do we alre proven/tes	Bioreactor C4b	4?	Gaz phase (? Liq? Solid?)
		3-4	Mass balance only
	Crew – C5	5-7	For gas dynamic (CO ₂ /O ₂) of rats
(

More details in UCA's presentation (L. Poughon)

VARSITY – Lessons learned #2

System simulation

- State Vector (SV)
- Sizing issue
- System Readiness Level (SRL)

•

VARSITY – Lesson Learned #2 System simulation

Issue #1: models compatibility

Melissa loop – Functional model

VARSITY – Lesson Learned #2 System simulation

Melissa loop – Functional model

Issue #2: sizing

Current models of MELiSSA compartments and connections (distributors, pipes, ...) do not consider volumes (mass balance models) or are validated for fixed volumes (e.g. C4a) System simulation scenarios are limited How to take into account *Which is the best strategy* for system design? system sizing? **Mechanistic models of First introduction of MELiSSA** compartments **System Readiness Level** (SRL) in TN142.1 need sizing

Conclusions Insights for future system studies

•

2022 MELISSA CONFERENCE 8-9-10 NOVEMBER 2022

HITCH

www.melissafoundation.org

Follow us
f in Y D

THANK YOU.

Marco Gatti EnginSoft

m.gatti@enginsoft.com

2022 MELISSA CONFERENCE 8-9-10 NOVEMBER 2022

beyond gravity

ENGINSOFT

QINETIQ

2022 MELISSA CONFERENCE 8-9-10 NOVEMBER 2022

