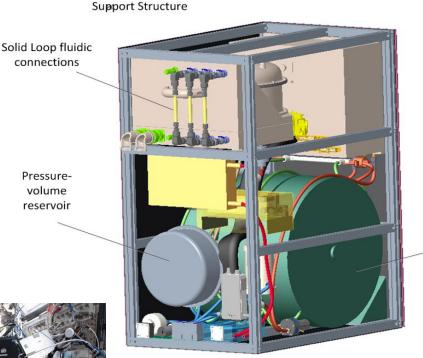
beyond gravity

Design & operation of a bread board model of spirulina photobioreactor equipped with a harvesting system to support ISS On-Board Demonstrator development

Dominique CHAPUIS, Paolo DAINESI, Céline LAROCHE, David DUCHEZ, Baptiste JARRY, Gilles DUSSAP, Dries DEMEY, Marie VANDERMIES, Olivier GERBI, Chloe AUDAS, Christel **Paillé**

Contact: Dominique.Chapuis@beyondgravity.com

- Biorat-1 On-board Demonstrator
- Bread Board Model
 - -Previous design
 - -New functionalities
 - -Life test results
- Conclusions & Way Forward


BIORAT-1 OBD Objectives

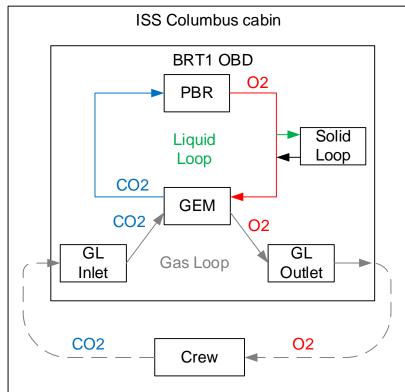
- BRT1 On-board demonstrator (OBD)
- Objectives:
 - Demonstrate operation of Photoautotrophic Bacteria
 Compartment (IV4) in microgravity
 - Demonstrate recycling of CO₂ directly from ISS cabin into O₂ for crew by the mean of a photobioreactor & spirulina (Limnospira indica PCC 8005)
 - Demonstrate optimal process control:
 - Precise regulation O₂ production on demand
 - Validation of model predictive strategy
 - Generate edible biomass

(operate in axenic conditions, avoiding contamination)

- Demonstrate long term operation and controllability
 (90 days demonstration sequence)
 - (90 days demonstration sequence)
- Accommodation
 - ISS, European Drawer Rack 2 (EDR2)

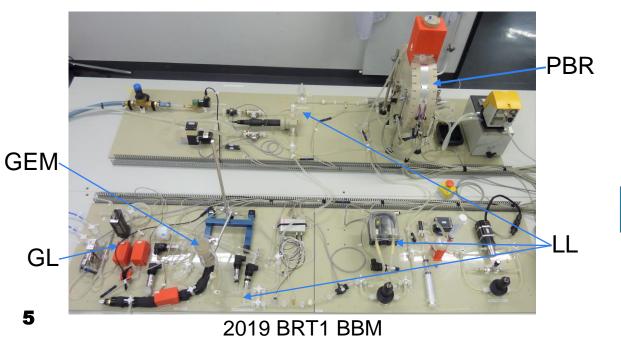
BRT1 OBD Concept design

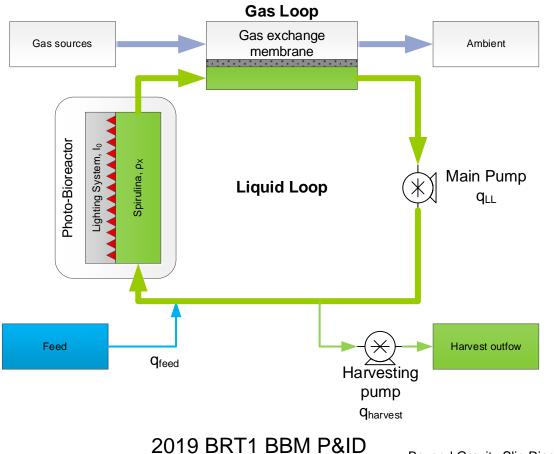
BIORAT-1 OBD Operation Principle


- Limnospira indica PCC 8005 oxygen production stoichiometry
- BRT-1 OBD key components & functions
 - Liquid Loop (LL): transfer of chemical species in liquid
 - Photobioreactor (PBR): O2 & biomass production
 - Gas Exchange Membrane (GEM): O2 & CO2 transfer between gas & liquid phase
 - Gas Loop (GL): Transfer of O2 to the LL & CO2 to the cabin
 - Solid Loop (SL):
 - Harvesting: Biomass concentration control,
 - Feeding: Nitrate supply in Zarrouk medium
- Life tests with Bread Board Models (BBM) to validate OBD design

Ref. Biorat, MELiSSA demonstration breadboard, Final Presentation 2000

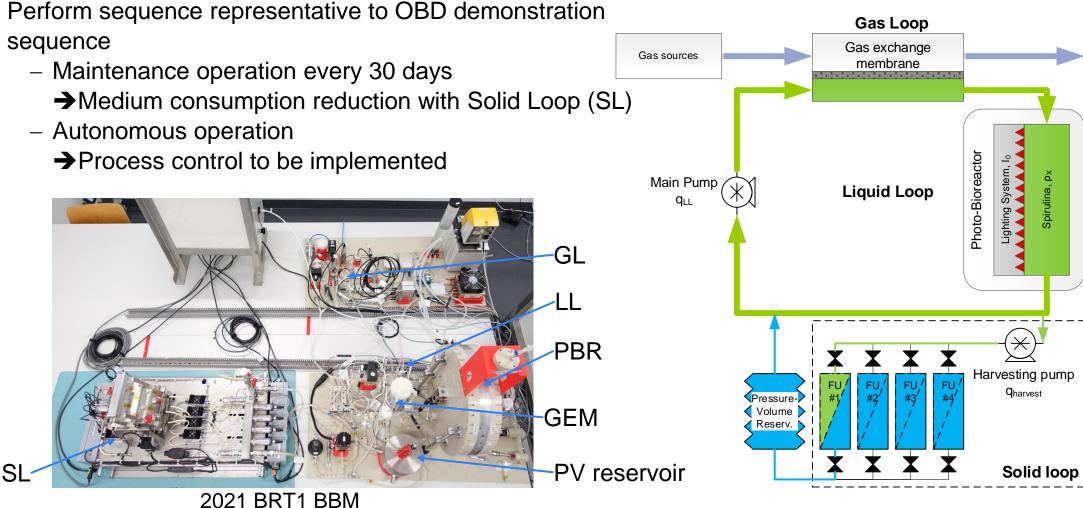
 $\xrightarrow{\langle r_X \rangle}$


 $HCO_{3}^{-} + 0.70 H_{2}O + 0.17 NO_{3}^{-} + 0.007 SO_{4}^{2-} + 0.006 HPO_{4}^{2-} + 0.197 H^{+}$

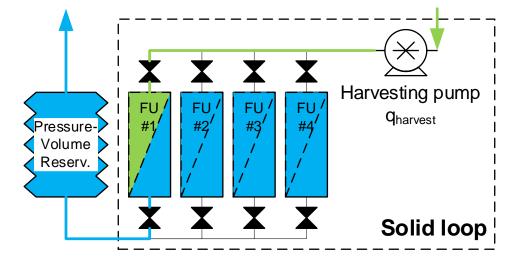

 $CH_{1.58}O_{0.46}N_{0.17}S_{0.007}P_{0.006} + 1,39 O_2 + OH^{-1}$

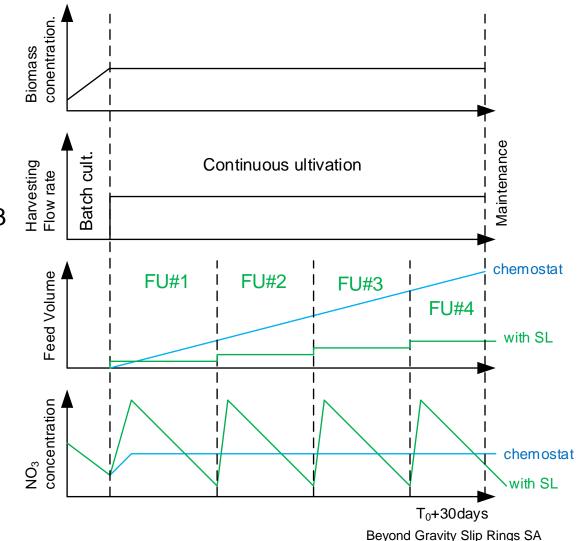
Biorat-1 BBM Previous BBM design

- 2019 BBM Life test, performed to validate Photobioreactor & Liquid Loop
 - PBR 2.6L, O2 production 6.8mmol/hr
 - Chemostat operation (no solid loop)
 - → high feed consumption
 - No process control
 - →Light intensity, harvesting flow rate set manually



Ambient


beyond gravity

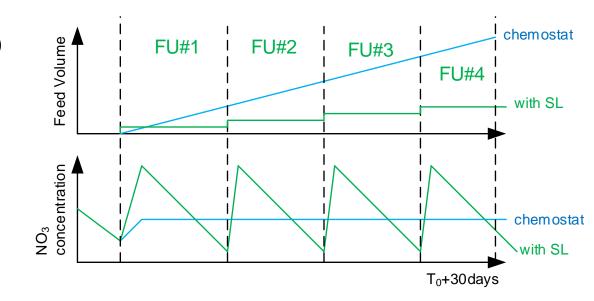

Biorat-1 BBM 2021 Life test objective

Biorat-1 BBM Solid loop operation

- LL operation at constant biomass concentration (1.5g/L)
- Batch cultivation: biomass increases, no harvesting
- Continuous cultivation: Harvesting flow rate enabled
 - Filter Unit (FU) #1 activation
 - Harvesting: Biomass accumulated in the FU
 - Feeding: NO3 in Zarrouk medium released into LL
 - Sequential activation of the other FUs in function of NO3 concentration
- Maintenance operation: replacement of the FUs

Biorat-1 BBM Solid loop operation

Pros & cons of discrete/batch feeding:

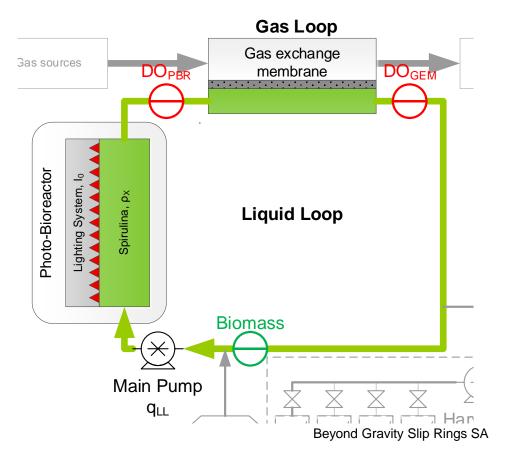

+ Less volume medium needed from typically 1.8L/day to 0.11L/day by

- decoupling between harvesting flow rate & feeding
- concentrated Zarrouk up to (7.3x reference concentration) stored in FUs

+ Constant volume operation, fresh medium replaced by the harvested biomass in the FUs

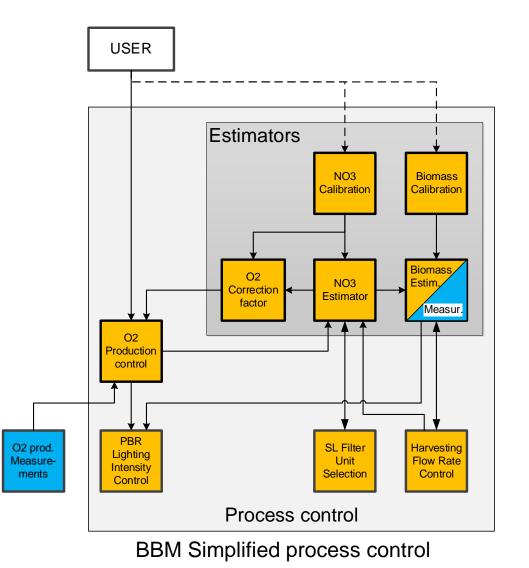
+ No dewatering needed for the harvested biomass

- -Variation of NO3 concentration in LL
 - Switching of FUs & maintenance operation must be performed at low NO₃ concentration to prevent overshoot
 - NO₃ concentration variable needed for process control

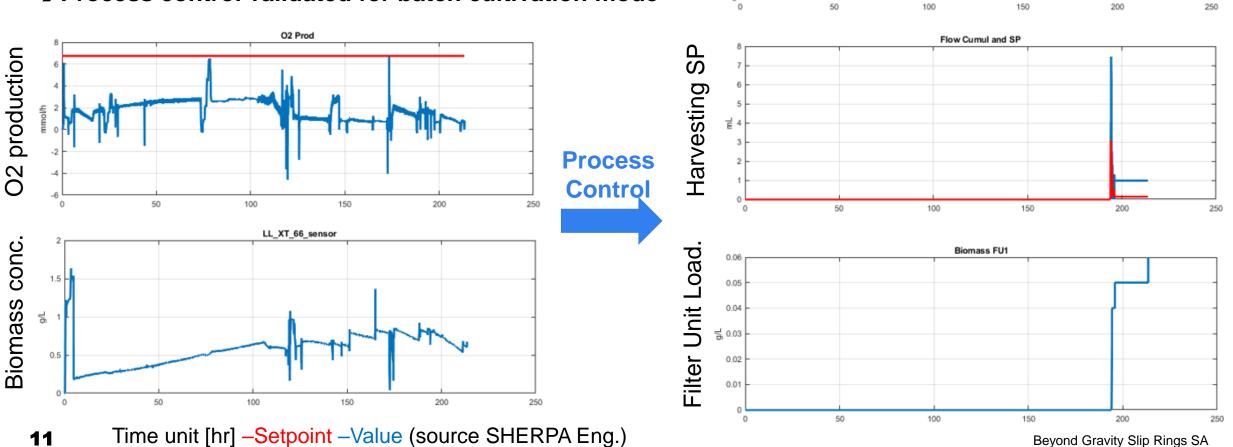


Biorat-1 BBM Key process variables measurement

- Existing
 - Oxygen production measurement
 - Measurement: dissolved O2 mass balance before and after the GEM
 - Hardware: Pyroscience, Firesting O2 & OXROB3
- Upgrade
 - Biomass
 - Measurement: optical density sensor
 - Hardware: Hamilton, Dencytee
 - Alternative: software estimator based on O2 production measurement
 - Nitrate
 - No online sensor suitable
 - Software estimator based on O2 production measurement
 - NO3 Calibration function to correct NO3 estimator and
- O2 measurement.


 $HCO_{3}^{-} + 0,70 H_{2}O + \underbrace{0,17 NO_{3}^{-}}_{V_{4}} + 0,007 SO_{4}^{2-} + 0,006 HPO_{4}^{2-} + 0,197 H^{+}$ $\xrightarrow{<r_{X}>} CH_{1,58}O_{0,46}N_{0,17}S_{0,007}P_{0,006} + \underbrace{1,39 O_{2}}_{V_{4}} + OH^{-}$

Ref. Biorat, MELiSSA demonstration breadboard, Final Presentation 2000


Biorat-1 BBM Process Control Software

- Existing Low level control loops:
 - LL flow rate & pressure, PBR Light intensity control, LL temperature control, Feed flow rate, GL flow rate, etc...
- Update:
 - Process control:
 - Estimators for NO3 & Biomass
 - Control of O2 production, SL Filter Unit selection and SL Harvesting flow rate
 - System Inputs:
 - O2 production measurement
 - LL NO3 concentration estimation
 - LL Biomass concentration estimation or measurement
 - Active FU's
 - User inputs:
 - O2 set point
 - When needed: NO3 or Biomass calibration value

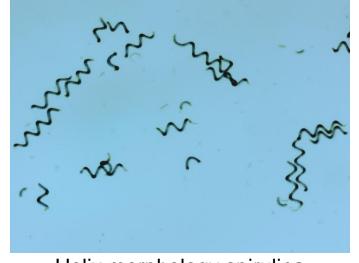
BRT1 BBM Life test Process Control Results

- Process control up to 5 days (99hr) ٠
- GEM Clogging Issue @99hr •
- → Process control validated for batch cultivation mode

PBR Light int.

0

beyond gravity


Lights Requested PCR

beyond gravity

BRT1 BBM Life test Spirulina morphology issue

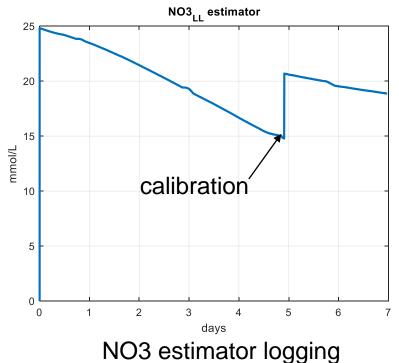
- GEM clogging anomaly
 - 2017 & 2019 life tests: Limnospira indica PCC 8005, with straight morphology -> Design & GEM validated
 - 2021 Life test: Limnospira indica PCC 8005 with helix morphology
 - GEM clogging anomaly at 0.65g/L
 - Hollow fiber diameter (200 μm) not compatible with helix shape (dia. 18-20 μm or trichomes clustering)
- Consequence: Life test sequence forced to be stopped during batch mode
- Lessons learned: Increase of GEM hollow fibers diameter in next BBM iteration

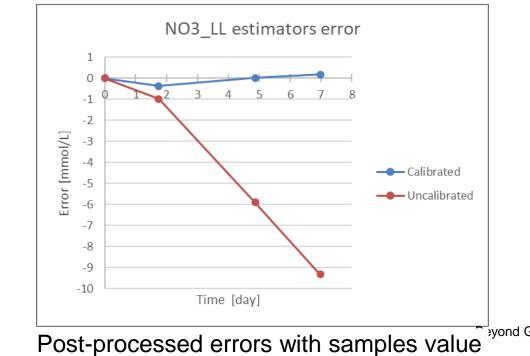
Helix morphology spirulina

Beyond Gravity Slip Rings SA

BRT1 BBM Life test Nitrate Estimator Calibration

- Need of estimator calibration:
 - Low uncertainty: Stoichiometric coefficient
 - High uncertainty: O₂ production measurement
 - q_LL measured LL flow rate
 - H Henry coefficient of liquid
 - p_DO_GEM, P_DO_PBR measured dissolved oxygen
- Solution: NO₃ estimator calibration:
 - Input: Measured NO₃ value on a sample
 - Output:
 - Calculation of a O₂ production correction factor
 - Update of NO₃ estimator value
- NOTE: NO₃ titration not possible on-board of ISS

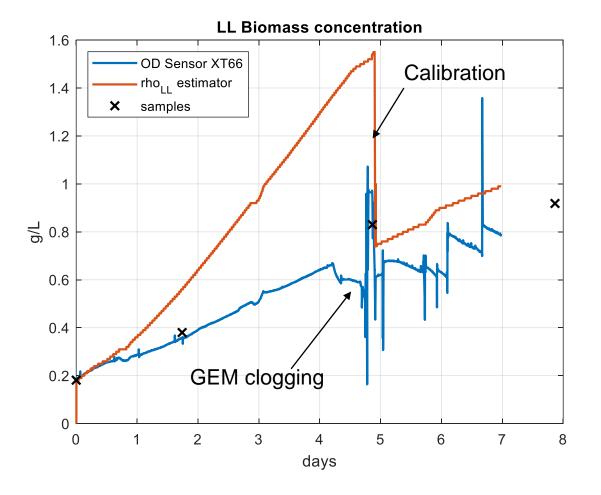

BRT1 BBM Life test Nitrate Estimator Correlation


beyond gravity

- Sampling time: @day#0, #2, #5, #7
- Calibration time @day #5

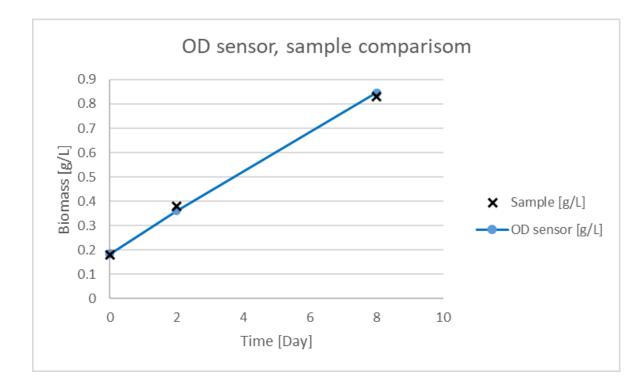
14

- O₂ prod correction factor: 0.41 (Identified by the process control)
- After calibration: NO₃ estimator consumption better than 20% error
- ➔ NO₃ estimator & calibration validated



yond Gravity Slip Rings SA

BRT1 BBM Life test Biomass measurements comparison


- Sampling performed in BBM activities
 Samples @Day #0, #2, #5, #8
- Comparison of LL concentration:
 - Biomass estimator (model-based)
 - On-line Optical Density sensor (Hamilton Dencytee)
- Results:
 - Biomass estimator
 - divergence with actual value in case on anomaly
 - need calibration like NO₃ estimator
 - Optical density measurement
 - + actual biomass concentration measurement

→OD sensor better than biomass estimator

BRT1 BBM Life test Optical Density-Biomass Correlation

- Optical density 2-points calibration with day#5 sample
- Errors after calibration (over a 0.2g/L to 0.8g/L range):
 - Maximum absolute error: 0.02[g/L]
 - Maximum relative error: 5%
 - →OD sensor validated
- Correlation factor determination prior experiment:
 - Live calculation based on absorbance value prior & after inoculation
 - Recommended procedure: correlation with a laboratory spectrophotometer on the inoculum & scaling. Higher accuracy

Conclusion & Way Forward

beyond gravity

Conclusion

- Results validated over batch mode
 - Process control operation
 - NO₃ Estimator & Calibration function
 - Biomass OD sensor validated
- Lessons learned
 - GEM Design compatible with helix morphology spirulina needed.

Way Forward

- To be validated in next life test
 - Process control operation in continuous mode & during maintenance operations
 - SL operation in continuous mode
 - Harvesting
 - Feeding
- Upgrade for next BBM & OBD design
 - Robust NO₃ management compatible with ISS operation (without titration)
 - Axenic design

Acknowledgements

Life test performance Spirulina expertise Control System Electronic & Software Solid loop

QINETIQ

Control System Software Control design & simulation