

HVP-photobioreactor for intensified microalgal culture: influence of low culture thickness and high biomass concentration on hydrodynamics, gas-liquid mass transfer and biofilm development



Jérémy PRUVOST, Charlène THOBIE, Walid BLEL, Caroline GENTRIC, <u>Jack LEGRAND</u> GEPEA, Université de Nantes, CNRS, UMR6144, bd de l'Université, CRTT - BP 406, 44602 Saint-Nazaire Cedex, France



# Outline of the lecture

- Parameters governing PBR performances and intensification principles
- Application for the development of an intensified PBR technology :

The PRIAM technology

• Hydrodynamics optimisation (two-phase flow in confined geometry)





# Parameters governing photobioreactors performances and intensification principles





This introduces **3 engineering parameters** that reveal highly influent:

- The collected light as represented by the **Photons Flux Density** (PFD, noted q)
- The **specific illuminated surface**  $(a_{light} = S_{light}/V_R = 1/L$  for a flat panel PBR of depth L)
- The non-illuminated volume as represented by the design dark fraction f<sub>d</sub> (=0 ideally)



#### More details:

Pruvost J, Cornet JF. Knowledge models for engineering and optimization of photobioreactors. In: C.Walter CPa, ed. Microalgal Biotechnology: De Gruyter GmbH & Co. KG; 2012:181-224. Cornet J-F. Calculation of optimal design and ideal productivities of volumetrically lightened photobioreactors using the constructal approach. Chem. Eng. Sci. 2010;65(2):985-998. Tank (internal circulating loop)







 $f_d \rightarrow 0$ 

a<sub>light</sub>

### Some guidelines for the design of optimal PBR intensification:

- The design dark fraction (f<sub>d</sub>) has to be made **as low as possible**
- Areal productivities are mainly fixed by light received (q), and increasing light received will increase kinetics performances
- Volumetric productivities can be increased while keeping constant areal productivities (and limits are from the engineering point of view, as determined by the limit in achievable value of a<sub>light</sub>)

Important note: In all cases, the system has to provide sufficient control to reach the light-limited regime (no other limitation than light occurs: no limitation by nutrients or dissolved carbon, near-optimal values of pH and temperature...)

### The role of a<sub>light</sub> introduces the « High Volumetric Productivity » concept





### **Range of productivities covered by typical culture systems for** *A.platensis* (predicted from engineering formula\* for same PFD of 250µmole/m<sup>2</sup>/s)





# Application for the development of an intensified PBR technology :

## PRIAM technology



### Development of an intensified technology: PRIAM PBR







Project funded by the French National Agency (ANR): 234k€ Collaboration with two french companies: Brochier Technologies, AlgoSource Technologie<sup>8</sup>



### Development of an intensified technology: PRIAM PBR



Multi-panels assembly for a total volume of 1m<sup>3</sup> (modular production capacity)





In-silico optimisation through knowledge models



9



- Batch culture (100µmol<sub>hv</sub>/m<sup>2</sup>/s): biomass x 6 in 3 days (0.9 to 5.5g/l)
  → Because of the large growth rate, continuous culture has to be preferred
- Continuous culture (200µmol<sub>hv</sub>/m²/s): biomass productivity of 3.75kg/m³/d close to the one expected from in-silico modeling (4kg/m³/d, <10% error): breakthrough performance compared to state-of-the-art technologies (x15-30)</li>
  → Production capacity of 3.5-4kg/day (0.02 for conventional PBR)
- Biofouling remains moderate, but can be further optimized for long term operation...







Hydrodynamics: the main limitation to PBR intensification

**PRIAM PBR** 

 $\mathbf{q}_{\mathbf{0}}$ 

 $\mathbf{q}_{\mathbf{o}}$ 



State-of-the-art technology (one-side illumination)



Moving to high-cell density culture (>10kg/m<sup>3</sup>) Intensified geometry leads to very low culture depth (3mm for PRIAM) with larger biomass concentration

Hydrodynamics becomes the main limiting factor:

- Biofouling of optical surfaces
- Needs to maintain sufficient gasliquid mass transfer in confined geometry
- Possible change of rheological behavior (shear thinning behavior)







GEPEA



# Hydrodynamics optimisation (twophase flow in confined geometry)





## Hydrodynamics in confined geometry (4 mm)

### A specific and original hydrodynamics:

• Effect of confinement on terminal velocity :



• Decrease in mixing capability at low gas superficial velocities

Increased interactions between bubbles

|                           | Transition                | Heterogeneous                   |
|---------------------------|---------------------------|---------------------------------|
|                           | U <sub>Gsup</sub> (m.s⁻¹) | <i>U<sub>Gsup</sub></i> (m.s⁻¹) |
| Water                     | 0.010                     | 0.044                           |
| Water (Olmos, 2002)       | 0.030                     | 0.065                           |
| 50% w/w glycerol solution | 0.006                     | 0.017                           |

Transition et heterogeneous regimes appear at low U<sub>Gsup</sub> → Limited Gas hold-up to stay in homogeneous regime

- water 10% (w/w) glycerol solution
- 50% (w/w) glycerol solution



UNIVERSITÉ DE NANTES ALGOSOLIS MICROALGAE RÉD FACILITY

## Impact of confined hydrodynamics on G/L transfer



#### **Importance of G/L mass transfer in PBR**:

- Inorganic CO<sub>2</sub> is provided at the beginning (culture medium) and during culture (bubbling)
- Transfer must not limit growth and must prevent the accumulation of O<sub>2</sub>





### Use of bubbling to extend the time before biofilm development

• Light intensity reduction through PBR walls during continuous culture



| Injections                | T injection |  |
|---------------------------|-------------|--|
| т (Ра)                    | 0,21        |  |
| TFS (%)                   | 143%        |  |
| F <sub>bubble</sub> (Hz)  | 1,59        |  |
| d <sub>Sauter</sub> (mm)  | 7,1         |  |
| V <sub>bubble</sub> (m/s) | 0,13        |  |
| Shadowgraphy              | 0           |  |

#### Avoid these types of bubbling $\rightarrow$ another strategy to be found



### Conclusion



- An intensified PBR was developed for microalgae production in artificial light: the PRIAM technology
- PRIAM technology combines intensification principles and modularity for a scalable production in a compact unit (up to 3.5-4kg/day)
- PRIAM present breakthrough performances compared to state-of-the-art technologies (x15-30 in volumetric productivity, x100 in daily production)
- Hydrodynamics reveals the main limiting factor: diphasic flows in confined geometry were especially investigated
- Research on the gas-liquid flow to reduce biofilm problem (patent in progress)
- Concept of PRIAM technology (compact intensified artificial light PBR) could be adapted to spatial constraints (no gravity)



Atlantic ocean

La Baule

Saint-Nazaire

IgoSolis

GEPEA lab. (CRTT)

R&D facility

Polytech' Nantes Graduate shool of the University of Nantes Process and Bioprocess Engineering



UNIVERSITÉ DE NANTES

(CMrs)

# GEPEA

Thank you for your attention

CONTACT

Jeremy PRUVOST algosolis@univ-nantes.fr www.algosolis.com