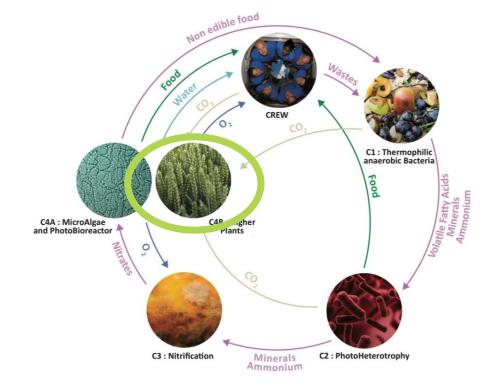
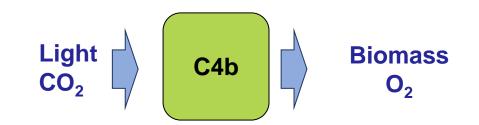


Characterization of the performance of the Higher Plant Chamber in the MELiSSA Pilot Plant under batch and staggered mode of operation using *L. sativa*

Carol Arnau


MELiSSA Pilot Plant – Claude Chipaux Laboratory, Universitat Autònoma de Barcelona

C. Ciurans, A. Vizcarra, A. Pannico, R. Paradiso, E. Peiro, S. De Pascale, F. Gòdia


The MELiSSA Concept

Photosynthetic compartment

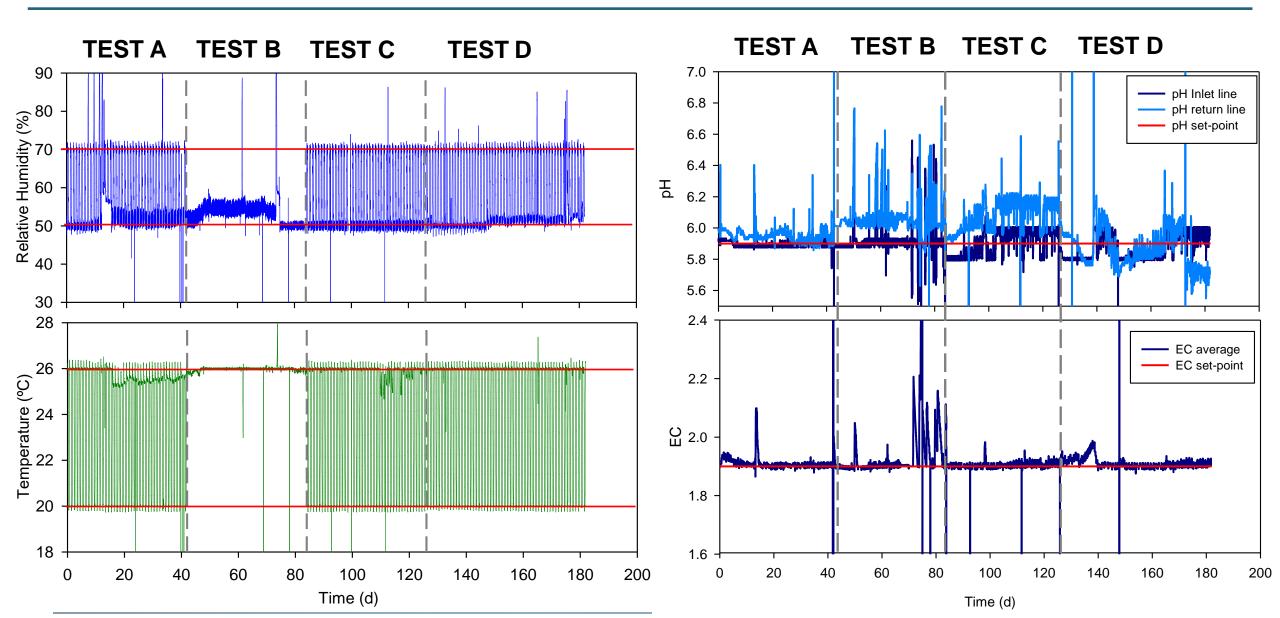
Function in the loop

C4b compartment: Higher Plant chamber description

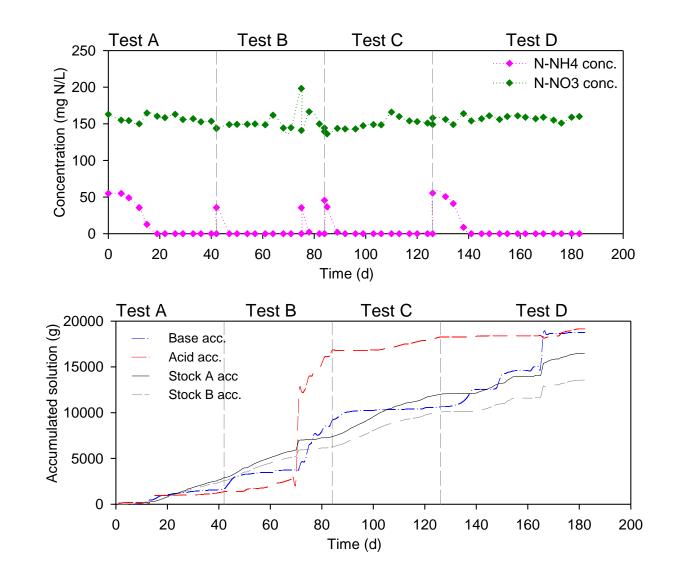
- 5 m² chamber (9300 L)
- 100 plants capacity (20 trays with 5 plants)
- LED-based lighting system
- Hydroponic solution recirculation
- Online monitoring of O₂ and CO₂

- Gas loop closure
- Air locks system (prevent gas losses during operation)
- Controlled overpressure at 50 Pa
- Compensation tank to manage atmosphere pressure changes

Lettuce Staggered Test cultivation strategy

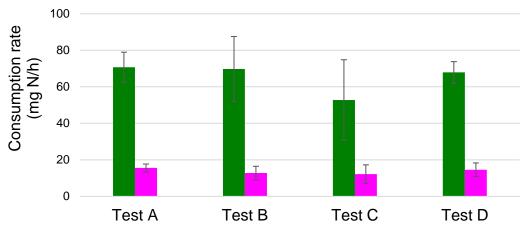

Number of days spent by plants in HPC

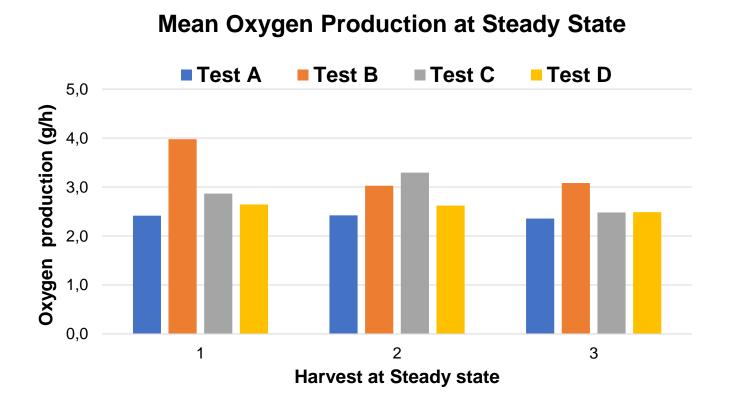
Experiment A	Experiment B	Experiment C	Experiment D		
STANDARD ILLUMINATION	CONTINUOUS ILLUMINATION	HIGH INTENSITY ILLUMINATION	HIGH CO2 CONCENTRATION		
PPFD 400 µmol/m²/s	PPFD 400 µmol/m²/s	PPFD 550 µmol/m²/s	PPFD 550 µmol/m²/s		
R:B=4.0 ; R:Fr=8.0	R:B=4.0; R:Fr=8.0	R:B=4.0; R:Fr=8.0	R:B=4.0; R:Fr=8.0		
16/8 day/night	24/0 day/night	16/8 day/night	16/8 day/night		
CO ₂ 1000 ppm	CO ₂ 1000 ppm	CO ₂ 1000 ppm	CO ₂ 5000 ppm		
6 weeks duration	6 weeks duration	6 weeks duration	8 weeks duration		


Results: Main controlled variables performance

Cesa UMB MELISSA

AGRARIA


Results: Ammonium and Nitrate nutrient solution profiles


Ammonium and Nitrate consumption rate N-NO3 N-NH4

AGRARIA

Cesa UMB MELISSA

- Ammonium is consumed after approx. 20 days when the plant chamber is started with 100 (9 days-old) seedlings crops.
- During the staggered phase ammonium is completely consumed.
- Nitrate is consumed secondly and its kept constant at approx. 150 mg N-NO₃/L
- Ammonium and nitrate consumption rates at 16 mg N-NH₄/h and 75 mg N-NO₃/h, respectively

 High repeatability of oxygen production for test A and D

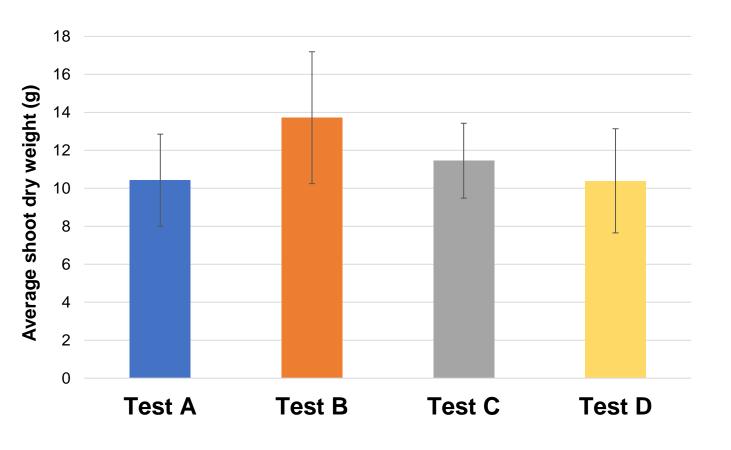
MELISSA

- Variability within same testing conditions
 (for test B and C)
- Higher oxygen production at 24h illumination (Test B; H1)

UAB

esa

 CO₂ concentration at 5000 ppm has no effect on Oxygen production (Test D)

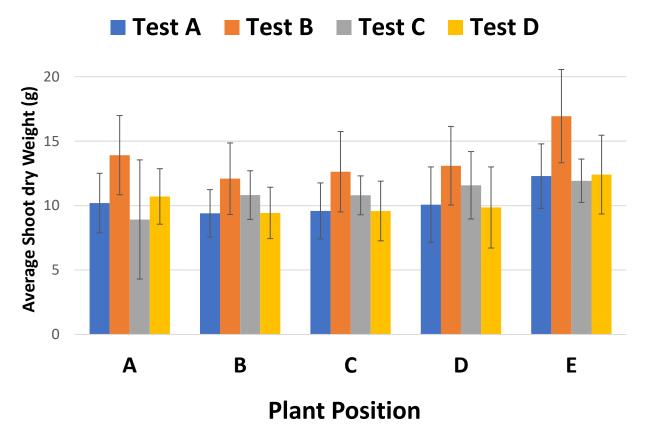


Comparison of Oxygen production and carbon dioxide consumption, average during the day for

the first harvest at steady state

	O ₂ production			CO ₂ consumption			
Test	(g h ⁻¹)	(mol day ⁻¹)	Per cultivated area (µmol m ⁻² s ⁻¹)	(g h⁻¹)	(mol day ⁻¹)	Per cultivated area (µmol m ⁻² s ⁻¹)	
	(911)				(mor day)		
Test A	2.42	1.81	4.20	2.85	1.56	3.60	
Test B	3.98	2.98	2.98 6.91 4.		2.65	6.14	
Test C	2.87	2.15	4.98	3.47	1.89	4.38	
Test D	2.64	1.98	4.59	2.03	1.11	2.57	

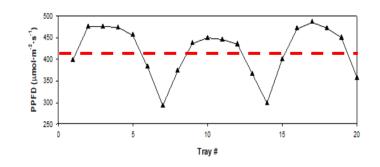
Results: Average shoot dry weight at steady state



- Higher shoot dry weight obtained at 400 µmol/m2/s at 24 h photoperiod (test B)
- Similar shoot dry weigh obtained at 400 and 550 µmol/m2/s at 16/8 h photoperiod (test A&C)
- Minor impact in shoot dry weigh at high CO₂ concentration (5000 ppm) (test D)

Results: Average Shoot dry weight at Steady State per *plant position*

Example of plant growth at different position in the tray at 28 days cycle at steady state (Test A)


Results: Average Shoot dry weight at Steady State per *Tray number*

Average Shoot Dry Weight (g) **Tray Number**

Test A Test B Test C Test D

- Similar Shoot dry weight obtained after 28 days cultivation in all harvested trays
- High degree of homogeneity in the chamber

Results: Biometric characteristics of plants at steady state (Harvest 1; 25 plants)

Test	Leaf area	Leaf number	Plant dry weight	Roots dry weight	Shoot fresh weight	Shoot dry weight	Shoot dry matter	Harvest
	(cm ² plant ⁻¹)	(no. plant)	(g plant ⁻¹)	(%)	index			
Test A (28 days)	2228	36.64	11.41	0.853	232.05	10.70	4.62	0.94
Test B (28 days)	2375	49.68	13.76	1.442	287.30	12.23	4.29	0.89
Test C (28 days)	2255	45.36	13.41	1.389	272.75	12.02	4.42	0.90
Test D (28 days)	2509	34.86	11.67	1.273	243.42	10.39	4.26	0.89

- Controllability of the chamber parameters allows an excellent monitor and control of atmospheric gas conditions (RH and T) and hydroponic solution (pH, EC and T)
- Similar ammonium and nitrate consumption rates for all conditions tested (\approx 16 mg N-NH₄/h and \approx 75 mg N-NO₃/h)
- Oxygen production higher than 2.5 g O_2 /h for all conditions tested.
- The highest Oxygen production (3.89 gO₂/h) is obtained at 24 hours photoperiod at 400 μ mol·m⁻²·s⁻¹ light intensity on the first harvest at steady state
- High degree of homogeneity of plants growth at 28 days cultivation in the chamber
- Similar Shoot Dry Weight obtained after 28 days cultivation in all harvested trays

2022 MELISSA CONFERENCE 8-9-10 NOVEMBER 2022

TIME

www.melissafoundation.org

Follow us

THANK YOU.

Carol Arnau MELiSSA Pilot Plant technical coordinator

Carolina.arnau@uab.cat

2022 MELISSA CONFERENCE 8-9-10 NOVEMBER 2022

beyond gravity

ENGINSOFT

QINETIQ

2022 MELISSA CONFERENCE 8-9-10 NOVEMBER 2022

