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Urine: 91-96% water + …

salts

• Substrate for heterotrophic bacteria -> stimulates 
biofouling + contaminant proliferation

• Micropollutants

Unstable -> NH3 volatilisation

• Scaling
• Impacts biological treatment
• NaCl hampers usage as fertilizer

• ~0.92% N
• ~0.66% C: ~half in urea; ~half in other organics
• ~0.46% salts

Risks & 
challenges



(After Hu et al. 2010)3

Waste 
treatment

Edible food
1.3 kg H2O d-1

Condensate
190 kg H2O d-1

Shower water
27.6 kg H2O d-1

0.8 kg O2 d-1

1 kg CO2 d-1

Faeces
0.14 kg H2O d-1

Organic waste
1.7 kg H2O d-1

Irrigation
192 kg H2O d-1

0.85kg O2 d-1

1.1 kg CO2 d-1

Urine
1.5 kg H2O d-1

Condensate
1.3 kg H2O d-1

Hygiene water
25.6 kg H2O d-1

Water in Space? Urine as major flow in missions without grey water

Short missions:
- Yellow water: Urine + flush water →

around half of the water flow
- Condensate: Respiration and 

transpiration crew

Sabatier water, as a function of the CO2

management system

Additional flows in longer missions:
- Grey water from hygiene activities (e.g. 

shower)
- Transpiration water (food production 

with plants)
- Black water (from toilet flush)
- Grey water from service activities 

(laundry, dish-washer, etc.)
- …



Water recovery from urine at the International Space Station (ISS)
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Racks for the ISS water recovery system 

(Carter et al. 2011)

Belgian astronaut Frank De Winne repairing 
the Urine Processor Assembly (UPA)

Belgian astronaut Frank De Winne: ‘In Space, we drink the same coffee every day’
-> Water recycling from urine is a no-brainer for human exploration 



Nitrogen in Space? -> Urine as major flow

(Clauwaert et al., 2017)

Urine: 50-64% in closed system with food production



Urine
8 g  C d-1

Waste 
treatment

Feces
9 g C d-1

Edible food
292 g C d-1

Organic waste
371 g C d-1

40-200m²

Hygiene water
6 g C d-1

269 g CO2-C d-1

393 g CO2-C d-1

6 (After Hu et al. 2010)

Carbon in Space? -> Urine as negligible flow



Nitrogen gas (N2) requirements and production potential in Space

• N2 requirement
• To maintain a pressurized cabin atmosphere, counteracting 

losses due to extravehicular activities, structural leakages,…
• 15.9 kg N needed

• Production potential of N2 from urine
• Through partial nitritation/anammox
• 14 kg N produced on average

• N2 recovery from urine can offset on average 88% of the N2 gas 
need (25% of the stochastic runs can offset all losses)

• Curious for more? Talks on Thursday (urine & nitrification session 
3/3, room 2):
• Technology R&D: Marijn Timmer
• Mission scenarios: Tim Van Winckel

• Assumptions: Mars transit mission, 4 crew members, 650 days
7

N2

requirement
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Modular and complimentary options to deal with urinary resources

Note: N2 production can be an elegant solution to uncouple undesired salinity (NaCl) 
from water and useful nutrients for food production driven by biological N2 fixation
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N and C conversion stoichiometries in urine

Combined processes Overall stoichiometry

Ureolysis, full 
nitrification

& C conversion

0.5 CO(NH2)2 + 0.22 CH3COOH + 2.18 O2  

→ 0.96 NO3
- + 0.036 C5H7O2N + 0.76 CO2 + 1.06 H+ + 0.73 H2O

Ureolysis, partial
nitritation/anammox 

& C conversion

0.5 CO(NH2)2 + 0.22 CH3COOH + 1.14 O2  

→ 0.43 N2 + 0.11 NO3
- + 0.032 C5H7O2N + 0.78 CO2 + 0.11 H+ + 1.26 H2O

• Urine: ~1 g COD/g N -> equivalent to ~0.22 mol acetic acid/mol N
• Only aerobic COD conversion (no denitrification)
• Aerobic COD conversion at 21-days mean cell retention time (sludge age)

Conclusions:
• Nitrification: ~96% N recovered as nitrate, ~81% C converted to CO2

• Partial nitritation/anammox: ~86% N recovered as nitrogen gas, ~83% C converted to CO2

• For both: ~half of CO2 production from urea; ~half of CO2 production from COD

Assumptions:



1
1

Preliminary dimensioning and input/output assessment

• Volume nitrification or PN/A unit, assuming a loading rate of 0.5-1 g N/L/d (and a crew of 6): 
• 58-120 L active reactor volume
• ca. 230-460 L reactor + skid/instrumentation/…

• Input/output:
• Oxygen demand: Majority for N conversion
• OH- demand: Only for full nitrification (~1 mol OH-/mol N)
• Sludge production: Similar for N and COD conversion

• Assumption: 9.6 g N/crew member/d in urine

O2 NaOH Sludge 
required required produced

Numbers for 1 crew member g O2/d g/d g/d
Full nitrification 
(~100% NO3

-
)

48 29 3.6

Partial nitrification 
(~50% NO3

-
; ~50% NH4

+
)

28 0 2.6

Partial nitritation/anammox
(~86% N2; ~11% NO3

-
)

25 0 3.2



Thought exercise – Bring your N fertilizer from home

• Mission: 3 years, 6 astronauts 
• Food production with ‘conventional hydroponics’: KNO3 as N source, 14 (‘low’) -> 25 (‘high’) g N 

needed/person/day
• N fertilizer need: up to 660-1200 kg KNO3

▪ Note: Not recycling water (12 L/person/day) requires about 79,000 kg H2O -> 66-120x more mass
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Nitrification-based urine treatment: The MELiSSA strategy towards demonstration in Space 
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1 g
Reduced gravity (< 1 g)

-> gas/liquid mass transfer challenges

Open and dynamic
-> ‘natural/stochastic’ selection

Defined and thus biosafe
-> ‘curated/controlled’ selection

Radiation protected
(magnetic field)

Higher solar and cosmic radiation
-> effects on biology (including crew)

+ Further system’s decision making and optimization based on ALiSSE (advanced life support system 
evaluator) metrics: mass and energy requirements, reliability, and crew time and safety

Synthetic: Progressively 
increasing complexity 

Real: Full complexity (organics, 
salts, micropollutants)

Flask incubation and 
process characterization

Reactor operation, modelling, 
automation, control

Bioreactors and other unit 
processes 

Fully integrated treatment 
pipelines/systems

Ground demonstration Space demonstration



Overview maturity microbiome and matrix types

Process Microbiome Type of urine

Open Defined Synthetic Real 

Ureolysis +++ +++

+ + +

Nitrification +++ +++

++ ++ ++

Partial nitritation/anammox +++ +++

COD conversion +++ +++

+ + +
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• Development maturity with open communities >> defined communities
• Development maturity nitrification > partial nitritation/anammox >> ureolysis > COD conversion
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• Demonstrated at salinities of undiluted urine: Coppens et al. (2016)

• pH control variations:
• Full nitrification: Chemical OH- addition (a.o. Coppens et al., 2016)

• Full nitrification: Electrochemical OH- addition (PhD De Paepe, 2020)

• Partial nitrification: pH-based feeding, no OH- addition (Eawag POMP Valentin Faust)

• Particle-free effluent through use of membrane bioreactors (Coppens et al., 2016; De Paepe et al., 2018)

• First insights into N2O emissions and optimization potential (0.4-1.2% of N load) (Faust et al., 2022a)

• Insights into understanding and avoiding ingrowth of novel acid-tolerant ammonia oxidizer
“Candidatus Nitrosoacidococcus urinae” (Faust et al., 2022b)

• Gravity-independent (bubbleless) aeration: membrane-aerated biofilm reactor on real urine 
• Nitrification (De Paepe et al., 2020b)

• Partial nitritation/anammox (Timmer et al., in prep.)

Key achievements open communities



Nitrifiers in a defined/synthetic microbiome: Once upon a time (1989): MELiSSA technical note 1

Anammox bacteria in an open microbiome: “Candidatus Brocadia sp.”
(in an open/mixed community; Timmer et al., in prep.)

Heterotrophs: A consortium of four is currently considered (tested in UAB/MPP):
1. Cupriavidus necator
2. Comamonas testosteroni
3. Pseudomonas fluorescens
4. Acidovorax delafieldii

A microbiome for nitrification-based urine treatment
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30+ years later: Suitability Nitrosomonas europaea and
Nitrobacter winogradskyi confirmed for urine treatment

-> Talk Carolina Arnau on Thursday in 
Urine session 3/3
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With focus on the nitrifiers (Nitrosomonas and Nitrobacter):
• Predictive modeling (Cruvellier et al., 2016) 

• Very high nitrification rates: 1.7-2.5 g N/L/d (100-54% efficiency) (Cruvellier et al., 2017)

• Proteomic understanding of salt effects on nitrification (Ilgrande et al., 2018)

• Reactor operation demonstrated at salinity of undiluted urine for nitrification (Christiaens et al., 2019)

With focus on the heterotrophic bacteria (ureolysis; COD conversion):
• Selection of ureolytic, salt-tolerant heterotrophs with batch tests (Ilgrande et al., 2018)

• First reactor treatment of real urine achieved with defined nitrifiers (Christiaens et al., 2019)

• First reactor treatment with synthetic urine at high nitrate production rates (>0.5 g N/L/d) (Marcel 

Vilaplana/Carolina Arnau, MPP/UAB)

Key achievements defined communities
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• Co-treatment of urine and: 
• Black water, organic waste (BWTB, KULeuven)

• Grey water (shower), condensate (Lindeboom et al., 2020)

• Pre-treatment: 
• Alkalinization: Electrochemical (De Paepe et al., 2020a) or chemical (a.o. De Paepe et al., 2018)

• Spontaneous ‘maturation’: ureolysis and organics fermentation (Eawag, POMP Nele Kirkerup)

• COD removal: Bio-anodic (De Paepe et al., 2020b) or membrane aeration (Eawag, PhD Aurea Heusser)

• Post-treatment, valorization and integration:
• Water recovery – integrated process (Lindeboom et al., 2020)

• Concentrated liquid fertilizer (water removal) – integrated process (Eawag/VUNA)

• Food and oxygen production
• Microalgae – integrated process liquid/gas (UAB/MPP)

• Plants – off-line combination
• System aspects

• Automation and control (a.o. Sherpa Engineering; Université Clermont Auvergne)

• Stochastic Space mission scenario analyses (Van Winckel et al., in prep.)

• Preliminary establishment ALiSSE (advanced life support system evaluator) metrics
• Terrestrial environmental sustainability assessment (UAntwerp & Eawag, in prep.)

Key pipeline/integration/system achievements



Experiment BiSTRO Nitrimel URINIS A URINIS B BIORAT 2

Research topic
Reactivation potential of stored

microbes (executed)
In-flight activity (planned)

Conversions Nitrification

Nitrification, 
ureolysis, 

denitrification, 
anammox

Nitrification, ureolysis

Activity 

determination

Pre- and post-flight
batch reaction

Post-flight
batch reaction

In-flight 
batch reaction

In-flight 
continuous 

reactor

(Lindeboom 
et al., 2018)

(Ilgrande 
et al., 2019)

Nitrification-based processes in Space

See poster 6

Martin 
CerffThanh Huy
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Fernandez
Tom 

Verbeelen
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1. Environmental control (EC)
-> Waste treatment for risk mitigation

Regenerative life support systems (RLSS)
-> Resource recovery to increase circularity 

and decrease external dependency

2. Produce water
3A. Produce N2 gas 
• for atmosphere provision 
• for biological nitrogen fixation for 

food/O2 production
AND/OR 3B. Produce a mineral nutrient 
solution for food/O2 production

Avoid NH3 volatilization, 
biofouling, scaling, biological 

oxygen demand,…

MELiSSA’s EC(R)LSS view on ‘nitrification-based’ urine treatment: Win-win-win-…

-> Nitrification-based processes modularly and flexibly fit in many EC(R)LSS goals/scenarios:

For all goals, the processes are feasible for ‘just’ urine (+ condensate) but also any more complex 
waste treatment effluents or MELiSSA cycle (faeces +/- organic waste +/- grey water +/- …)
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To get in touch or follow our activities:

Siegfried.Vlaeminck@UAntwerpen.be

https://twitter.com/Siegfried_Vla

https://www.linkedin.com/in/
siegfried-vlaeminck-

84678853/

(Credits: De Paepe)
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