

Cultivated meat for human space exploration

2022 MELiSSA Conference Toulouse, France João Garcia Research fellow European Space Agency

M Kellular agriculture & cultivated meat

Cellular agriculture describes the process of using cells to produce commodities (meat, leather, milk)

Cultured meat describes the process of growing animal tissues (i.e. muscle, fat) using animal cells:

- Core principles derived from tissue engineering and regenerative medicine
- It emerged as an alternative to conventional (and unsustainable) livestock farming
- Deemed to be **safer**, as there is total control of the production processes, reducing the likelihood of contamination and **foodborne illnesses**
- Requires less land, energy and water when compared to livestock farming

Source: New Harvest

M Cellular agriculture & cultivated meat

Cellular agriculture describes the process of using cells to produce commodities (meat, leather, milk)

Source: New Harvest

Sources: Aleph Farms, Meatable, Wildtype, Blue Nalu, Future Meat Technologies, Steakholder Foods

Parameter	Mammalian & avian cells	Fish & crustacean cells	
Temperature (°C)	37	10-30	
Oxygen (pO ₂)	1-5% or 21%	<1-21%	
Carbon dioxide (CO ₂)	5 %	5 %	
рН	7.4	7.4, possibly resisting higher	
		variations	

Water species might be more convenient as they are more resistant to variation in environment conditions and can be cultured at lower temperatures

	Cell type			
	Muscle-resident cells/progenitor cells	Pluripotent stem cells		
Examples	 Satellite cells Fibro-adipogenic progenitor cells Mesenchymal stem cells 	 Induced pluripotent stem cells (iPSCs) Embryonic stem cells (ESCs) 		
Cons	 Limited proliferation capacity Long doubling times (>30h) 	 Difficult to (re)program cells Might require genetic engineering strategies Ethical concerns (ESCs) Can be difficult to obtain 		
Pros	 Easy to isolate Differentiation protocols are faster and easier 	 "Unlimited" proliferation capacity Can differentiate into multiple tissues Short doubling times (<24h) 		

Stirred tank

Packed-bed

Fiber

Characteristic	Bioreactor			
	STR	PBB	HFB	
Max cell density (cells/ml)	1x10 ⁵ - 1x10 ⁷	$1 \times 10^{6} - 1 \times 10^{7}$	1x10 ⁷ - 1x10 ⁸	
Operation in microgravity	Possible, but mixing of media and cells will need to be optimized	Ils will need to be attached to a substrate and a		
Reusability	Yes	Yes, but further development needed (edible microcarriers or efficient dissociation methods)	Yes, but further development needed (edible fibers or efficient dissociation methods)	
Major limitations	 Shear stress on cells Control aggregate formation/size Not suitable for differentiation stage 	 Scalability Mass transfer Cell harvesting Reusability 	 Cell harvesting Reusability 	

1200 days

4 CM (4x82 kg)

59.04 g protein/CM/day

59.04 g protein/CM/day

	kg media per kg	
	cultivated meat	
Low-efficiency	41	
Mid-efficiency	23	
High-efficiency	6	

1200 days

4 CM (4x82 kg)

Roughly 1300 kg of cultivated meat over a period of 1200 days

> 97% of media is water

M Me Mars example - Recycling will be crucial

59.04 g protein/CM/day

	kg media per kg cultivated meat
Low-efficiency	41
Mid-efficiency	23
High-efficiency	6

> 97% of media is water

Possibility for integration with water reclamation systems with recovering efficiencies >75%

1200 days

4 CM (4x82 kg)

M Mars example - Recycling will be crucial

AIChE

.

Proliferation and differentiation of primary bovine myoblasts using Chlorella vulgaris extract for sustainable production of

Yuta Okamoto, Yugi Haraguchi 🖨 Azumi Yoghida, Hironobu Takahashi, Kumiko Yamanaka. Naoya Sawamura, Toru Asahi, Tatsuya Shimizu 🚭

	STR	PBR	HFB	Units
Max cell density bioreactor	1x10 ⁷	1x10 ⁷	1x10 ⁸	cells/ml
Internal volume	0.34	0.34	0.034 (0.068)*	m ³

*in HFBs fibers account for 50% of the total volume

Bioreactors that achieve higher cell densities will likely be preferred due to volume and mass limitations

(edible or reusable)

Sensing and monitoring capabilities

(biochemical, chemical and physical parameters)

(heat, radiation or chemical methods)

Post-processing

(Product formulation, storage, cooking)

M Microgravity leads to muscle loss

Dav1 Dav3 Dav5 Dav7

- 1) Studies on how cultured meat cells behave in space environment conditions
 - 1) Altered gravity
 - 2) Radiation

Potential countermeasure strategies to eliminate the effects of microgravity and radiation

- 2) Filtering and recycling strategies
 - 1) Filtering of wastewater, lactate and ammonia
 - 2) Possibility for integration with other life support systems

- 1) The current space food system is **not suitable** for future long-term & long-distance exploration missions
- 2) Cultured meat has the potential to deliver highly nutritious and fresh food products
- 3) Limitations include launch volume and mass, recycling strategies, and cell behaviour in microgravity
 - 1) Bioreactors that achieve higher cell densities will likely be preferred due to volume and mass limitations
 - 2) Recycling strategies (namely water) will be crucial for making cultured meat a viable food source in future human spaceflight
 - 3) Integration with existing life support systems will render the cultured meat systems viable for space exploration

Development and implementation of cultured meat systems for space will improve ground systems, and potentially contribute for a more secure and safe global food system.

What is cultured meat?

ESA's presentation @ CMS Astro

Life cycle analysis of cultured meat

ESA's article on cultured meat

THANK YOU.

João Garcia joaopedro.marquesgarcia@esa.int

www.melissafoundation.org

Follow us on social networks

