

CIRIS

Lettuce cultivation in a urine recycling scenario: Effects of different NH₄⁺:NO₃⁻ ratios

M. Schiefloe¹,Ø.M. Jakobsen¹, A. Pannico², C. Quadri³, A.I.K. Jost¹

¹ CIRiS, NTNU Social Research, Norway ² University of Naples, Italy ³ EnginSoft S.p.A, Italy

INTRODUCTION

Urine-based fertilizer for cultivation of higher plants

Hypothesis:

the outcome of the upstream process for urine nitrification may result in a varying ammonium:nitrate ratio, which can affect plant growth and development

Test campaign: Two tests with different NH4:N ratio (N provided as a mix of NO_3^- and NH_4^+)

Urine-based fertilizer for cultivation of higher plants

Nutrient solution strategy

Reference crop: control and starting point

• Lettuce test performed by the University of Naples in standard nutrient solution

NaCl addition to mimic urine

• Based on natural NaCl:N ratio in urine (5 mM Na in final nutrient solution, not accounting for possible accumulation)

Nutrient solution strength reduced to allow EC comparable to Reference

	Reference	LoNH4:N	HiNH4:N	
NH4:N	0.22	0.11	0.50	
Na:N	0.01	0.42	0.42	
CI:N	0.02	0.42	0.42	
EC /pH	1.9 / 5.9	1.9 / 5.9	2.2 / 5.9	

Nitrate control

- Feeding of nutrient stock solutions based on nitrate level
 - Optical nitrate sensor in the hydroponic loop
- Same total N concentration in both tests 146 mg/l N, 10.4 mM
- Test 1 (LoNH4:N): NH4:N = 0.11, 130 mg/l NO₃-N (9.3 mM)
- Test 2 (HiNH4:N): NH4:N = 0.50, 73 mg/l NO₃-N (5.2 mM)

PCU – Plant Characterization Unit

- Developed in the MELiSSA PaCMan1 project (2018-2020)
- Located at the Federico II University of Naples
- Closed atmospheric and hydroponic loop

- 18 plant positions
- Advanced gas and liquid monitoring
- Color and thermal camera systems

Seedling selection

Lettuce Lactuca sativa L.

cultivar 'Grand Rapids'

RESULTS

M Laus S A

Harvest after 28 days in PCU 38-day old plants

Parameter	LoNH4:N (0.11)	HiNH4:N (0.50)	Significance
Shoot FW (g)	290	120	P < 0.01
Plant DW (g)	21	13	P < 0.01
No. of leaves	40	26	P < 0.05
Leaf area (cm ²)	3907	1961	P < 0.01

Projected leaf area

Image segmentation of top view images

Shoot growth

as projected leaf area

Centre for Interdisciplinary Research in Space | NTNU Social Research

CIRis

Parameter	LoNH4:N (0.11)	HiNH4:N (0.50)	Significance
Root DW (g/plant)	2.4	1.9	
Root:Shoot ratio	0.14	0.19	P < 0.01
Harvest index	0.88	0.85	P < 0.01

Centre for Interdisciplinary Research in Space | NTNU Social Research

Root growth

Root morphology

Leaf chlorophyll and color

- SPAD: LoNH4:N significantly lower than HiNH4:N
- Color index: LoNH4:N had color index significantly more towards yellow than HiNH4:N.

Hi

8.4

Specific oxygen productivity

relative to projected leaf area

Light test 2-hour stabilization

LoNH4:N Day 24

Nutrient solution development

NO₃⁻ control - Sensor measurements vs offline Ion chromatography

Nutrient solution development

 NO_3^- constant due to control, NH_4^+ "free" NH4:NO3 ratio as function of time: HiNH4:N moves towards LoNH4:N with respect to NH4:N ratio, as NH_4^+ is depleted over time

Nutrient solution development

 NO_3^- constant due to control, NH_4^+ "free" NH4:NO3 ratio as function of time: HiNH4:N moves towards LoNH4:N with respect to NH4:N ratio, as NH_4^+ is depleted over time

Element content in plants (g/kg DW)

		Shoot			Root			
		Reference	LoNH4:N	HiNH4:N	Reference	LoNH4:N	HiNH4:N	
 Highest Middle Lowest Different color = statistically different 	NO ₃ -	17	27	4	47	79	12	
	NH_4^+	0.5	1.3	1.4	0.5	1.6	4.5	
	Na	1.6	4.6	3.1	1.4	4.7	3.7	
	Cl	17	20	17	3.9	6.7	1.9	
	Са	16	4	2	4.1	1.0	0.9	
	К	58	70	34	97	97	62	
	Mg	3	2	1	1.7	1.1	1.2	
	PO4	14	15	8	45	43	47	

M Edits S A

CONCLUDING REMARKS

Concluding remarks

- The upstream process makes a difference
 - Lower growth rate with high NH₄⁺
 - Differences in root size and morphology between high and low NH₄⁺
 - Lower specific O₂ production with high NH₄⁺
 - NH4:NO3 and NaCl influences element composition of the plant
- Plant uptake affects the NH4:N ratio
 - The NH4:N ratio decreases over time due to higher uptake rate of NH₄⁺
- Photosynthetic rate at increased CO₂
 - Plants not capable of utilizing the additional CO₂ in the 2hours test (biomass not adapted)
- Photosynthetic rate at decreased light
 - Immediate photosynthetic response to reduced light intensity

- The PCU allows for measurements of O₂ and CO₂ produced/used by the canopy
 - Offers evaluation of O₂ production as a function of projected leaf area - with interesting potentials
- The automatic nitrate control worked well
 - Opens new possibilities together with multiple nutrient stock solutions
- Accumulation of nitrite
 - Nitrifying bacteria in the system (buildup over time or increase due to high NH_4^+)
 - To consider in recirculating systems

THANK YOU.

Mona Schiefloe

Centre for Interdisciplinary Research in Space (CIRiS) NTNU Social Research, Trondheim, Norway mona.schiefloe@ciris.no

www.melissafoundation.org

Follow us

