

DIPARTIMENTODI

Characterization of three leafy vegetables in a sealed-off environmentally controlled growth chamber for life support systems

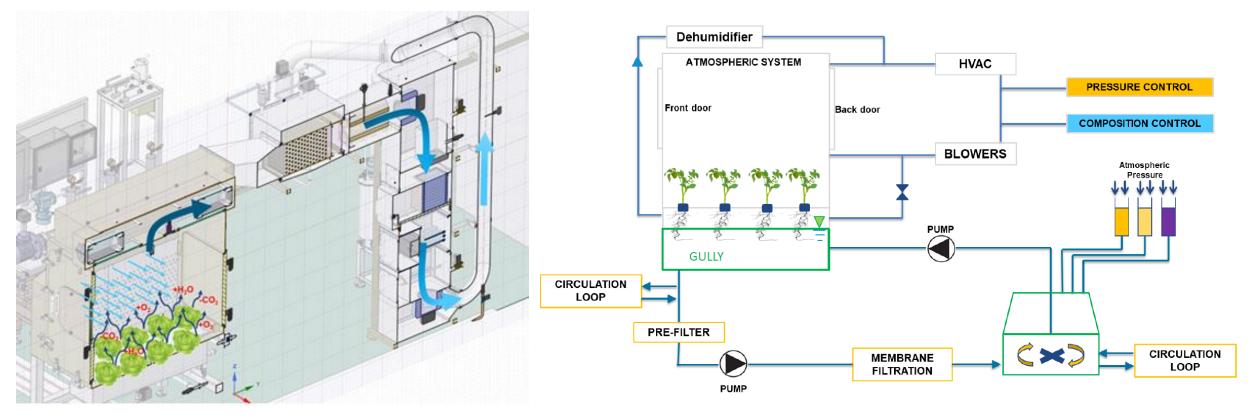
<u>Antonio Pannico</u>, Youssef Rouphael, Luigi Giuseppe Duri, Roberta Paradiso, Stefania De Pascale

Department of Agricultural Sciences

University of Naples Federico II, Portici, Italy

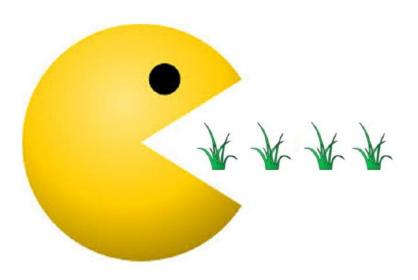
Laboratory of Crop Research for Space

PaCMan - Plant Characterization Unit (PCU)



Laboratory of Crop Research for Space PaCMan - Plant Characterization Unit (PCU)

Research facility to perform a fine-tuned crop characterization in which is possible to monitor and control independently the root and the aerial zone.



"PaCMan" ESA Project

Aims

- 1) To compare 3 leafy vegetables belonging to different botanical families (*Asteraceae, Brassicaceae* and *Chenopodiaceae*) in terms of:
 - ➤ Growth
 - ≻ Yield
 - Nutrient uptake
 - ➤ Gas exchanges
 - ➤ Water purification
 - ➤ Air regeneration

"PaCMan" ESA Project

Aims

2) To test the reliability of the PCU in terms of:

- > Environmental control:
 - Aerial zone: temperature, relative humidity, CO₂ concentration, atmospheric composition (gas analyzer), atmospheric pressure (pressure compensation system)
 - Root zone (nutrient solution): temperature, pH, electrical conductivity, dissolved O₂ and CO₂, mineral contents
- Gas tightness (leakproofness)
- > VIS imaging and thermal imaging
- Control system and data acquisition (including GUI software)

Growth conditions:

- Plant material: lettuce (Lactuca sativa L.), kale (Brassica oleracea L. var. acephala) and swiss chard (Beta vulgaris var. cicla) seedlings (three fully expanded true leaves)
- > PCU cultivated area: 1.8 m²
- Crop density: 10 plants m⁻² (18 plants in total)
- > Temperature and relative humidity: 26/20°C and 50%/70% RH day/night regime
- Photoperiod: 16h/8h day/night regime
- ➢ PPFD: 450 µmol m⁻² s⁻¹
- ➤ CO₂ set point: 1000 ppm
- ➢ Nutrient solution set point: EC 1.9 mS cm⁻¹ and pH 5.9
- Life Test duration: 28 days

Seedling transplant

Deep water culture system

Plant harvest

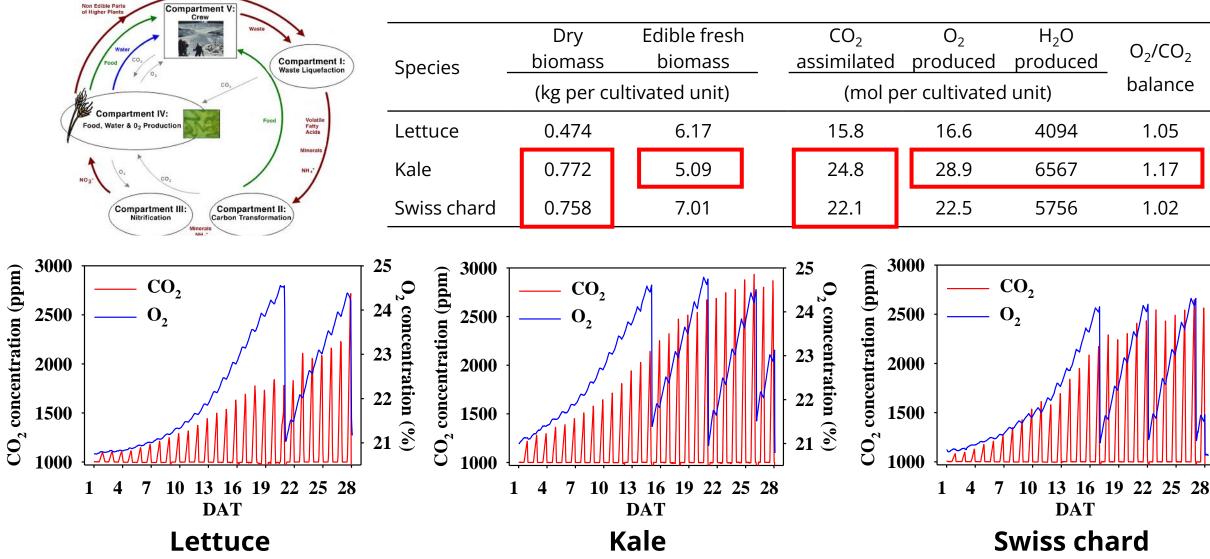
Lettuce

Kale

Swiss chard

Biometric characteristics of plants

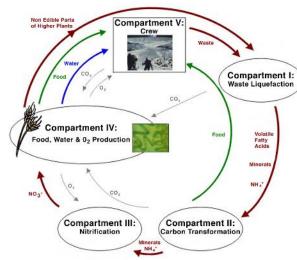
Species	Leaf area	Leaf number	Edible fresh biomass	Shoot dry weight	Roots dry weight	Plant dry weight	Harvest index	Dry matter of edible portion
	(cm ² plant ⁻¹)	(no. plant)	(g plant ⁻¹)		(%)			
Lettuce	3675	78.72	342.7	23.05	3.26	26.32	0.88	6.84
Kale	2398	26.61	282.9	36.45	6.41	42.86	0.70	11.07
Swiss chard	3454	66.94	389.2	34.21	7.87	42.08	0.81	9.09

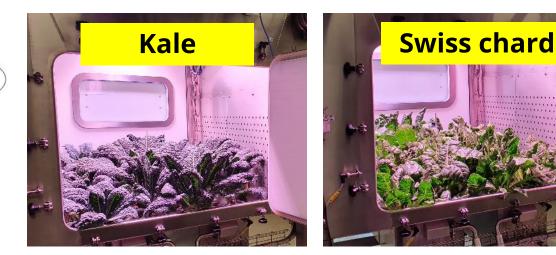


25

O₂ concentration (%) 22 22 21

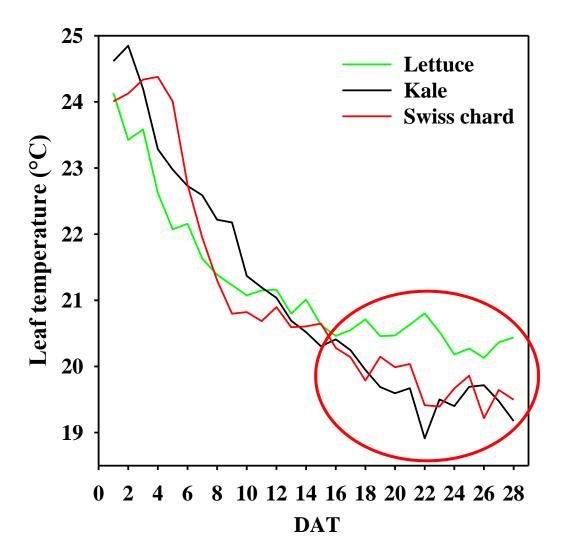
Food, water and oxygen production

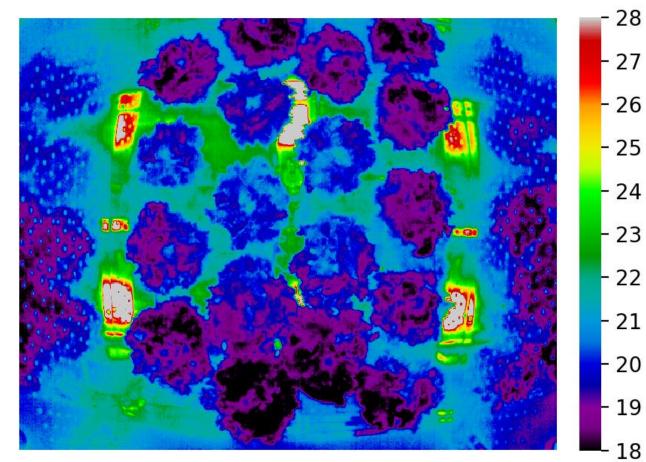



Water and oxygen production normalized for dry biomass and leaf area

	Dry	CO ₂	O ₂	H ₂ O		
Species	biomass	assimilated	produced	produced		
	(g plant ⁻¹)	(mmol per gram of dry biomass)				
Lettuce	26.32	33.3	35.1	8644		
Kale	42.86	32.2	37.5	8512		
Swiss _chard	42.08	29.1	29.7	7598		

	Leaf area	CO ₂	O ₂	H ₂ O			
Species		assimilated	produced	produced			
	(cm ² plant ⁻¹)	(mol per m ² of leaf area)					
Lettuce	3675	2.4	2.5	619			
Kale	2398	5.7	6.7	1521			
Swiss chard	3454	3.6	3.6	926			

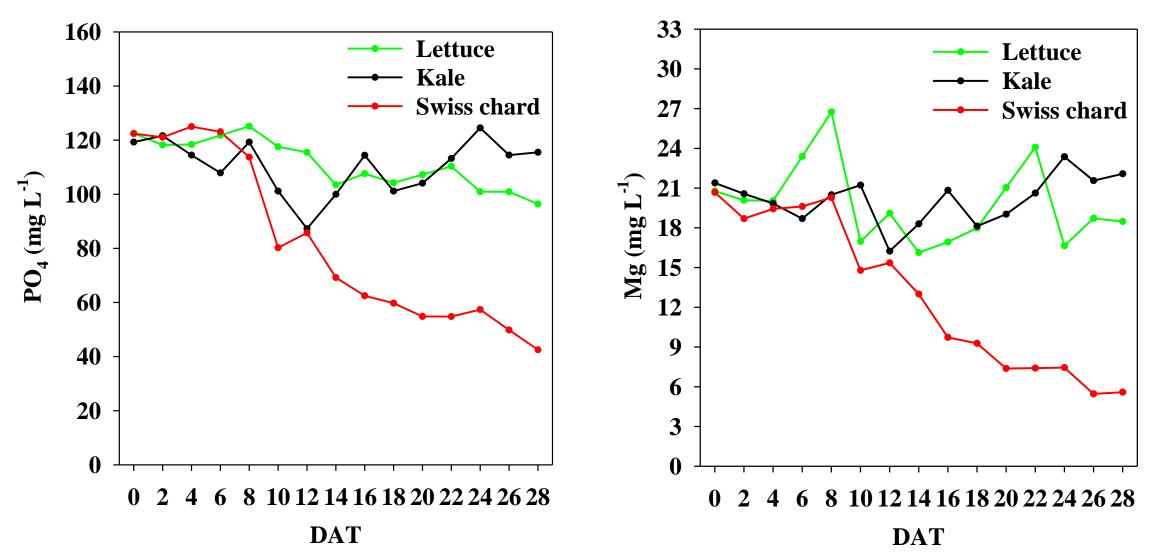




Leaf temperature trends

Shoot mineral and oxalate content

Species	Ν	Р	К	Ca	Mg	S	Oxalate
	(g kg⁻¹ DW)	(g kg⁻¹ DW)	(g kg ⁻¹ DW)	(g kg ⁻¹ DW)	(g kg ⁻¹ DW)	(g kg⁻¹ DW)	(g kg ⁻¹ DW)
Lettuce	42.77	4.52	58.09	15.56	2.95	1.12	1.10
Kale	77.74	5.14	37.73	23.68	2.74	11.96	0.39
Swiss chard	61.86	10.06	93.97	3.20	7.43	1.06	61.05


Evolution of the nutrient solution composition

Evolution of the nutrient solution composition

Conclusions

- > Kale and swiss chard produced more biomass, oxygen and transpired water per cultivated area than lettuce.
- > Specifically, swiss chard maximized food production, while kale enhanced oxygen production.
- > Different crops showed different nutrient uptake patterns.
- Our findings suggest that genotype selection to identify the top performing crops is a key factor to design crop production systems for BLSSs.
- > Nutrient solutions tailored to different species would enhance nutrient uptake and crop performances.
- The PCU was proved to be reliable and able to perform the fine-tuned crop characterization (of very different crops) needed to optimize plant cultivation for life-support systems for Space.
- Overall, our results provided a reference dataset for future crop characterization of different plant species under different environmental conditions, as well as useful data for integrating the High Plant Compartment (HPC) of the MELiSSA loop.

2022 MELISSA CONFERENCE 8-9-10 NOVEMBER 2022

IIII III IIII IIII

www.melissafoundation.org

Follow us

THANK YOU.

Antonio Pannico

Department of Agricultural Sciences, University of Naples Federico II

antonio.pannico@unina.it

2022 MELISSA CONFERENCE 8-9-10 NOVEMBER 2022

beyond gravity

ENGINSOFT

QINETIQ

2022 MELISSA CONFERENCE 8-9-10 NOVEMBER 2022

