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Earth
Patm ~ 1000 hPa

Mars :
Patm ~ 6 hPa (95% CO,)
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Mars Pathfinder 1997
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Water ice frost (Viking 2 48°N, 1978)




Enigmatic
“Recuring
Slope Lineae”

observed to form on
warmest slopes during
southern spring and
summer...

Flowing Brines ???

McEwen, Science
August 2011
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Liquid water exists on Mars, boosting hopes
for life there, NASA says

By Michael Pearson, CNN
(© Updated 1141 GMT (1941 HKT) September 29, 2015
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slope lineae on Mars

LETTERS

PUBLISHED ONLINE: 28 SEPTEMBER 2015 | DOI: 10.1038/NGEO2546

al evidence for hydrated salts in recurring

Lujendra Ojha'*, Mary Beth Wilhelm'?, Scott L. Murchie®, Alfred S. McEwen#, James J. Wray’,
Jennifer Hanley®, Marion Massé® and Matt Chojnacki*

Determining whether liquid water exists on the Martian surface
is central to understanding the hydrologic cycle and potential
for extant life on Mars. Recurring slope lineae, narrow streaks
of low reflectance compared to the surrounding terrain, appear
and grow incrementally in the downslope direction during warm
seasons when temperatures reach about 250-300 K, a pattern
consistent with the transient flow of a volatile species'.
Brine flows (or seeps) have been proposed to explain the
formation of recurring slope lineae'?, yet no direct evidence
for either liquid water or hydrated salts has been found®. Here
we analyse spectral data from the Compact Reconnaissance
Imaging Spectrometer for Mars instrument onboard the Mars
Reconnaissance Orbiter from four different locations where
recurring slope lineae are present. We find evidence for
hydrated salts at all four locations in the seasons when
recurring slope lineae are most extensive, which suggests that
the source of hydration is recurring slope lineae activity. The
hydrated salts most consistent with the spectral absorption
features we detect are magnesium perchlorate, magnesium
chlorate and sodium perchlorate. Our findings strongly support
the hypothesis that recurring slope lineae form as a result of
contemporary water activity on Mars.

the surface, or detection of hydrated salts precipitated from
that water.

The mineralogic composition of RSL and their surroundings
can be investigated using orbital data acquired by the Compact
Reconnaissance Imaging Spectrometer for Mars (CRISM) on the
Mars Reconnaissance Orbiter (MRO), which acquires spectral cubes
with 544 spectral channels (~0.4 to 3.92um; ref. 14). Within
the infrared (IR) detector spectral range of CRISM (1-3.92 um),
both liquid water and hydrated salts have diagnostic absorption
bands at ~1.4pum, ~1.9um and a broad absorption feature at
~3.0pm (ref. 15; Fig. 1). In addition, hydrated salts may exhibit
combinations or overtones at other wavelengths from 1.7 to 2.4 pm.
Given the coarser spatial sampling of CRISM (~18 m pixel ')
compared to HiRISE, few locations exist in which RSL are wide
or dense enough to fill even a single CRISM pixel. In this work,
we devised a variety of methods to reduce uncertainties from
extraction of CRISM spectra from individual pixels (Supplementary
Information), allowing examination of pixels mostly filled by RSL.

At Palikir crater, RSL are observed to be longest and widest
towards the end of the southern summer. In the HiRISE image
acquired at the end of the southern summer of Mars Year
(MY) 30, wide RSL were observed on the slopes of Palikir (Fig. 1




Enigmatic “Recuring slope
Lineae” observed to
form on warmest slopes
during southern spring
and summer...

Flowing Brines ???

McEwen, Science
August 2011

Recurrlng Slope Llnae
most likely dry, eolian
processes

Edwards and Piqueux (2016), Schmidt et al. (2017),

Dundas (2017, 2020), Vincendon et al. (2019),

Schaefer et al. (2019)
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“Gullies” on Mars |
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Gullies are formed by subliming CO, ice, not liquid water

Exemple of process : Gas fluidized debris flow (Pilorget and Forget, Nature Geoscience 2016)

€O, ice

debris

b)



Gas fluidized Dense pyroclastic flows on Earth (gerenated by volcanic eruption)

Felix and Thomas 2004
Jessop et al. 2012



On Mars : Ice, but no liquid
water on the surface

* On the Earth : life = liquid water

- T

* No liquid water = No life on Mars ?

* AND IN THE PAST ?












Geomorphology + Mineralogy = Mars 3-4 Billions years ago ?




Exploration by robotic geologists: Curiosity, March 26, 2021




Perseverance, 2021
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Humans on Mars ?




Mission to Mars :
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Technical Challenges of a crewed Mars mission
N

(o Journey to Mars:
— A long duration transportation/habitation spaceship

(roomy enough, perfectly recycling, repairable)

\_ Health and psychology (microgravity, radiation, confinement)j
* Landing on Mars

¢ lemg on Mars (habitats, spacesuits, power, ressources, contamination)

* Getting back from Mars surface



Orbital mission
around Mars




Phobos

(Mars Express, 2010)







Robotic system remote operation from orbit
(From ISS: Andreas Mogensen, 2015)




Technical Challenges of a crewed Mars mission

* Landing on Mars
¢ lemg on Mars (habitats, spacesuits, power, ressources, contamination)

* Getting back from Mars surface



- Landing on Mars:

Atmospheric Entry
Time: E+ Omin

Peak Heating
Time: ~E + 80s

Peak Deceleration

Time: ~E + 90s
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Technical Challenges of a crewed Mars mission

¢ lemg on Mars (habitats, spacesuits, power, ressources, contamination)

* Getting back from Mars surface



Wojciech Fikus

Living on the Martian Surface




Water
In-situ ressources on
WV EIS

to drink, breathe,
manufacture rocket
propellant, etc...°

(Mosaic from Viking mission in 1977)



o



Neutron Spectrometer, NASA Mars Odyssey, 2001

cosmic rays

Neutrons



Neutron Spectrometer, NASA Mars Odyssey, 2001

cosmic rays
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An ice-rich layer discovered by Mars Odyssey below a
few cm of dry sediments

Minimum water equivalent hydrogen abundance (weight percent) deduced from Neutron flux
(Boynton et al. 2002, Feldman et al. 2004)

2% 4% 8% 16% 32% > 64%
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Phoenix: May 25, 2008 68°N




First Ground View of the Mars
Polar Region




1st image Phoenix, may 2008
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Below Phoenix : ice exposed by landing thrusters
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Phoenix Ice-Bottomed Trenches

Dodo-Goldilocks Snow White
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Phoenix, 2008
2001, Boynton et al. 2002 Head et al., 2003, Milliken et al., 2003 Mangold, 2005, Levy et al., 2009,, ETC...

“Latitude dependant ice Mantle”

AGE < 2 Myr

Mustard et al.,




ice-exposing fresh
impacts

Byrne et al. 2009
Dundas et al. 2014

‘\
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Latitude dependant ice Mantle
AGE < 2 Myr

Mustard et al., 2001, Head et al., 2003, Milliken et al., 2003 Mangold, 2005, Levy et al., 2009, etc...



Posiolova et al. (Science, October 27, 2022) : Subsurface Water ice at 35°N
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On pole facing slopes, CO2 ice is stable closer to the equator

S50 [

latitude (°)
o

—50

CRISM “MSP” data — 230 m spatial resolution Vincendon et al. 2009



latitude (°)

Climate model prediction: ice stability over-predicted

a source of heat localized on slopes is required
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Ground model: dry regolith above H,0 ice rich regolith

Idry regolith =250

.. =2120

V'

Ice table depth: free parameter, latitude dependent

Vincendon et al. 2009
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High-resolution occultation
and nadir spectrometers
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A FREND Mapping of subsurface water

Collimated neutron detector and hydrated minerals




H,O mapping using TGO/FREND
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0 10 20 30 40 50 60 70 30 50 100 Malakhov et al., Ast. Lett., 2020

Fig. 3. Martian surface hydrological types. The areas with water content of 0—5% WEH (beige), 5—15% WEH (blue), and
above 15% WEH (dark blue) are highlighted with color.



Ing using TGO/FREND
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MOXIE Experiments on Perseverance

(Hoffman et al. 2022, Hecht et al. 2022)
solid oxide electrolysis of carbon dioxide in the martian atmosphere

2C0O, - 2CO0+ 0, (so far 50g of O,...)






Technical Challenges of a crewed Mars mission

* Journey to Mars:
— A long duration transportation/habitation spaceship

(roomy eough, perfectly recycling, reparable)

— Health and psychology (microgravity, radiation, confinement)

* Getting back from Mars surface



Thank you

Hope Mars mission first image, February 11, 2021
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