

Effect of heavy ions on development, photosynthesis and fruit antioxidant production in Microtom plants: a Space Perspective

Arena C.1*, Vitale E.1, Hay Mele B.2, Cataletto P.R.1, Turano M.1, Simoniello P.3, De Micco V.2

¹Department of Biology, University of Naples Federico II, Italy; ²Department of Agricultural and Food Sciences, University of Naples Federico II, Italy; Department of Science and Technology, University of Naples Federico II, Italy *carmen.arena@unina.it

INTRODUCTION

Plant cultivation in space represents a challenge for the scientists because, in extraterrestrial environments, plants experience altered gravity and ionising radiation that may profoundly affect growth and development [1]. Generally, plant response to ionising radiation depends on dose, ranging from irreparable damage at high doses to stimulatory effects at low levels [2, 3].

This study aimed to assess if non-lethal doses of heavy ions, namely C 25 Gy, delivered at the seed stage, may induce positive outcomes on Solanum lycopersicum L. cv 'Microtom' enhancing photosynthesis and promoting favourable traits in fruits (Fig. 2).

Calcium Oxalate Crystals

MATERIAL and METHODS

IRRADIATION PROCEDURE

Dose: 25 Gy of Calcium ions Energy: 200 MeV/u; LET: 180 KeV/µm

GROWTH and LEAF ANATOMY

Plant height Flower number Fruit number Dry biomass Leaf anatomy

- Chlorophyll and Carotenoid content
- Fluorescence a emission
- measurements
- D1 and Rubisco protein
- quantification

FRUIT ANTIOXIDANT CAPACITY

- Carotenoids, Anthocyanins, Polyphenols - Ascorbic Acid

REFERENCES

- [1] De Micco et al., 2011. Radiat. Environ. Biophys. 50:1-19
- [2] Arena et al., 2014. Acta Astronaut. 104:419-431 [3] Arena et al., 2017. Biol Plantarum 61(2): 305-314

PLANT GROWTH and LEAF ANATOMY

	Control		C 25 Gy	
Germination %	100	а	83.3	а
Flower Number	16.2 ±0.84	а	8.0 ±0.34	b
Fruit Number	23.0 ±1.00	а	11.0 ±0.52	b
Fruit diameter (cm)	0.16 ±0.001	а	0.24 ±0.001	b
Plant Height (cm)	7.90 ±0.001	а	6.14 ±0.001	b
Dry Biomass (g)	2.90 ±0.07	а	2.0 ±0.04	b

 Irradiation does not prevent plant germination Plants from irradiated seeds showed a reduced height and a more compact size

 Irradiated leaves do not show changes in leaf anatomy, but present a high number calcium oxalate crystals Irradiated plants produced a reduced number of berries with a large diameter

ANTIOXIDANT RESPONSE IN FRUITS

	Control			C 25 Gy		
Ascorbic Acid Content (ng ml ⁻¹)	30.44	± 0.68	а	38.98	±1.27	b
Total Carotenoids (mg g ⁻¹ FW)	29.08	± 4.87	а	59.73	±7.96	b
Total Polyphenols (mg AGE g ⁻¹ FW)	0.159	± 0.007	а	0.147	±0.004	а
Anthocyanin content (µg g ⁻¹ FW)	132.28	± 9.53	а	170.14	±4.96	b

Plants from irradiated seeds produced fruits richer in ascorbic acid, carotenoids and anthocyanins

ACKNOWLEDGMENTS

The authors thank Prof Marco Durante (TIPFA, Trento, Italy; GSI, Darmstadt, Germany) for his support in irradiation procedure.

From NASA.gov

CONCLUSIONS

In irradiated plants, photochemi cal efficiency is promoted compared to control

Control C 25 Gy

Irradiated leaves showed higher levels of D1 protein and photosynthetic pigment content than

100 um

