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Model Predictive Control (MPC)

internal	
prediction	
model

2

model-based	optimizer

set-points outputsinputs

measurements

r(t) u(t) y(t)

Use	a	dynamical	model	of	the	process	to	predict	its	future	
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Model Predictive Control (MPC)
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•	Only	apply	the	first	optimal	move	u(t),	throw	the	rest	of	the	sequence	away

predicted	outputs

manipulated	inputs

t t+k t+N
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•	At	time	t+1:	Get	new	measurements,	repeat	the	optimization.	And	so	on	…	

yk

•	At	each	time	 t,	find	the	best	control	sequence	over	a	future	horizon	of	N	steps

past

feedback !

numerical optimization problem

penalty on
tracking error

penalty on
actuation
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The MPC Concept

•	MPC	is	like	playing	chess	!

•On-line	re-planning	while	driving:



MPC in industry
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(Qin,	Badgewell,	2003)(snapshot	survey	conducted	in	mid-1999)

(Rafal,	Stevens,	AiChE	Journal,	1968)

• The	idea	of	using	MPC	in	the	process	industries	dates	back	to	the	sixties

• MPC	used	in	process	industries	since	the	80's



MPC in industry
• Economic	assessment	of	Advanced	Process	Control	(APC)
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(Bauer	&	Craig,	2008)

point closer to a limit xL by Dl, see Fig. 5, [43]. The reduc-
tion in variance is often assumed to be a fixed percentage.
Several industrial and academic authors assume a reduc-
tion of the standard deviation by 50% [19,61–63] or by
35% [64]. More optimistic estimates even propose a reduc-
tion by 85–90% [20,27,65].

The assumption of a fixed rate of reduction as applied
by many industrial authors is practical but in many cases
somewhat arbitrary. To achieve a more objective measure,
an upper bound for the economic benefit was proposed by
Muske [44]. The minimum variance of the process variable
can be estimated from historical data and process knowl-
edge [66].

If an accurate process model along with the designed
controller is available, then data for the new system can
be simulated and used to estimate the average perfor-
mance. This approach was pursued by Zhou and Forbes
[42] as well as by others [56,67] to get a realistic picture
of the performance of a new APC system. This approach,
however, might not always be the best choice since it
requires a detailed process model and significant computa-
tional effort.

The improvement resulting from the control system
upgrade can be expressed in quantitative terms by compar-
ing the average performance before the new system, that is,
the base case P before

av , and the estimated average perfor-

mance that is expected from the new control strategy
bP after
av . This improvement can be expressed as a profit index

computed from the variance reduction achieved by the new
system and a minimum achievable variance estimate [68].

Several other profit and cost factors are not always easy
to express in monetary terms but nevertheless make a con-
siderable contribution to the assessment. In the following,
several profit and cost factors are discussed.

4.3.1. Profit factors
Both APC users and suppliers were asked in the ques-

tionnaire to name the three most important contributors
to the benefits that result from improved process control.
Several authors [1,23,69,70] discuss the benefits of APC
systems and their contribution, which formed the basis of
the list in the questionnaire. Fig. 6 lists the most frequently
named factors. Despite the small sample size a clear trend
can be observed. In particular, throughput and quality,
which are directly related, were two frequently named
profit factors. A higher quality can be achieved by limiting
the throughput as shown in Fig. 7. APC shifts the curve up,
thus allowing higher throughput at the same quality or
improved quality for the same throughput or a combina-
tion of the two.

Some factors contributing to the benefit of APC are dif-
ficult either to estimate or to express in monetary terms.
Nevertheless, they contribute to the initial assessment and
budget proposal, as shown in Fig. 1. An interesting result
of the questionnaire is that the reduction of operating man-
power is named as a profit by 14% of the APC suppliers
while it is not regarded to have an impact on the profit
improvement by the manufacturing companies. A reason-
ing that manpower reduction results from advanced pro-
cess control is that operator attention necessary for
problem loops or alarm conditions can be reduced [71].
A reduction of operating manpower as a result of APC
was reported for an Austrian refinery [72].
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Fig. 4. Industrial use of APC methods: survey results.
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Fig. 5. Performance estimation through shifting of a process variable
closer to limit xL.
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participants	of	APC	survey	by	industry
(worldwide)

Industrial	use	of	APC	methods:	survey	results

sections identify the respondent and capture the size of the
plant as well as the use of control technology within the
organization. The third section queries the use of APC
technology and tools. Sections four to six are key to the
economic assessment process. While Section four covers
the managerial process by asking about reporting, decision
making and budgeting, Section five is concerned with the
engineering process and the estimation of cost and benefits.
Section six requests the respondents opinion about the
accuracy, importance and satisfaction with the current esti-
mation process in place as well as about future trends.

4. Framework – the engineering process

A good estimate of the performance that will result from
improved process control requires process insight as well as
an understanding of the control technology. Seven steps of
assessing the performance before and after implementation
are described in the left-hand column of Fig. 1. In this sec-
tion, these steps will be discussed in detail.

The focus of the survey as well as of most APC projects
is on continuous processes. In the survey, 90% of respon-
dents work on continuous processes. Cost/benefit assess-
ments of batch processes are conducted and reported less
frequently since there are fewer batch processes in the
chemical, petrochemical and refining industries. However,
most of the methods described in the following can be
applied to both batch and continuous processes for which
the time trend is monitored.

4.1. Base case identification

The initial step when considering a new APC solution is
to analyze the performance of the current system or the so-
called base case. For the questionnaire, APC experts were
asked how they determine the base case performance and
benefits. The majority of APC suppliers (53%) and a large
number of APC users (42%) estimate the variance before
control using historical data. Other estimation categories
include past experience with a similar project (25%) and

the estimation of qualitative, non-monetary benefits
(15%) as well as rules of thumb [47], such as that a new con-
trol scheme will increase the throughput by a fixed percent-
age (7%). For the water and waste-water industries, Lant
and Steffens [48] provide a qualitative self-assessment form
to establish how good the process control is. The disadvan-
tage of such a table is that it is industry related and has to
be updated with the development of new technologies.

The questionnaire results support the industry–univer-
sity study by Marlin and co-workers [49], which high-
lighted the importance of determining the base case
operation through in-depth analysis of historical plant
data. An important consideration for the base case identi-
fication is then the selection of the appropriate process
variables from which the variance is estimated. Latour
[19] recommends the analysis of the following variables:

• Critical product qualities.
• Important manipulated variables.
• Material and energy balance parameters.
• Constraint variables.

In-depth process insight such as knowledge of the inter-
relationship between variables or the steady-state economic
model of the process is indispensable information for the
base case identification [50]. A careful preliminary data-dri-
ven analysis of the plant can provide further insight prior
to any control upgrade [51].

4.1.1. Performance functions
In many cases, the variance of a process variable can be

linked to a monetary value. Although this is not the only
instance where economic benefit can be captured, it is the
most commonly used. A performance function [22,52]
defines either profit or loss as the process variable x moves
away from an optimum operation point. The derivation of a
performance function requires process insight and expert
knowledge. General guidelines are difficult to establish, as
the economic impact depends on the nature of the produc-
tion facility and on the industry [53]. Performance functions
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Fig. 2. Participants of APC survey by industry and by continent (total: 66 participants). Several answers were allowed for industry sectors.
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MPC	is	the	de-facto	standard	
for	advanced	control	in	the	
process	industry.



Typical use of MPC
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low-level	controllers

MPC

Steady-state	
optimization

•fast-sampling

•single-loop

•coordinate	multiple	inputs
•performance	optim.
•constraints	handling

•(economic)	set-point	
optimization

•static	I/O	model

output set points and
corresponding optimal actuator set points

set points to actuatorsmeasurements

static optimizer

dynamic optimizer

regulators

predicted	outputs

manipulated	inputs

t t+k t+N

uk

r(t)



MPC for Life Support Systems

•Quick	literature	search:

8

•Sherpa	Engineering	proposed	MPC	schemes	within



MPC for Life Support Systems

•NASA’s	environmental	control	and	life	support	system

9

are stored in an eXtensible Markup Language (XML) file, creating a new instance of BioSim does not require
changing any computer code. The XML file is read by the BioSim simulation at start-up and the appropriate
configuration is instantiated. This makes creating different kinds of habitats very easy even for those with no
programming experience. In addition, we are working on a graphical user interface (GUI) to further simplify
the process.

A. Simulation overview

A typical habitat system consists of multiple interacting modules.2 We have modeled most of these modules
using the best available information. The models are process models in that they take in certain resources
and produce other resources. They are not component models, that is, they do not model physical objects
such as valves, pumps, etc. Figure 1 shows the modules in our simulation. We now describe each of them in
detail.

Figure 1. The various modules that comprise a habitat life support system

1. Crew

The crew module is implemented using models described by Goudarzi and Ting.3 The number, gender, age
and weight of the crew are settable as input parameters. The crew cycles through a set of activities (sleep,
maintenance, recreation, etc.). As they do so they consume O2, food and water and produce CO2, dirty
water and solid waste. The amount of resources consumed and produced varies according to crew member

2 of 20

American Institute of Aeronautics and Astronautics

•Honeywell	proposed	a	Nonlinear	MPC	scheme	for	Variable	
Configuration	CO2	Removal	(VCCR) (Subramanian	&	Lamba,	2005)

• CELSS	(Controlled	Ecological	Life	Support	System) (Auslander,	1982)



powered	descent

Aerospace applications of MPC

(Bemporad,	Rocchi,	2011)

• MPC	capabilities	explored	in	new	space	applications	

• New	MATLAB	MPC	Toolboxes	developed	(MPCTOOL	and	MPCSofT)
(Bemporad,	2010)	(Bemporad,	2012)

planetary	rover

cooperating	UAVs

(Pascucci,	Bennani,	Bemporad,	2016)

(Krenn	et.	al.,	2012)



tire	
deflection

suspension
deflection

Automotive applications of MPC
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Advanced Controls & Optimization

Bemporad,	Bernardini,	Borrelli,	Cimini,	Di	Cairano,	Esen,	Giorgetti,	Graf-Plessen,	Hrovat,	Kolmanovsky,	Levijoki,	
Ripaccioli,	Trimboli,	Tseng,	Yanakiev,	...	(2001-2016)

Ford Motor Company

DENSO Automotive

General Motors

Jaguar

FIAT

Vehicle	dynamics
•traction	control
•active	steering	
•semiactive	suspensions
•autonomous	driving

Powertrain
•direct-inj.	engine	control
•A/F	ratio	control
•magnetic	actuators
•robotized	gearbox	
•power	MGT	in	HEVs
•cabin	heat	control	in	HEVs
•electrical	motors



MPC for Smart Electricity Grids

FP7-ICT project “E-PRICE - Price-based Control of Electrical Power Systems”
(2010-2013)

12

Dispatch	power	in	smart	distribution	grids,	trade	energy	on	energy	markets	

Challenges:	account	for	dynamics,	network	topology,	physical	constraints,	and	
stochasticity	(of	renewable	energy,	demand,	electricity	prices)

hydro-storage

wind	farm

photovoltaic

natural	gas

coal	1

coal	2

transmission	grid

? ? ?

? ? 

? ? ?

demand
? ? ?

http://www.e-price-project.eu/
http://www.e-price-project.eu/


MPC for Management of Drinking water networks

Drinking water 
network of 
Barcelona:
81 tanks, 
64 valves
180 pumps.

Automatically	operate	a	large-scale	urban	drinking	water	network

FP7-ICT project “WIDE - Decentralized and Wireless Control of Large-Scale Systems”
FP7-ICT project “EFFINET - Efficient Integrated RT Monitoring & Control of Drinking Water Nets”

Challenges:	minimize	network’s	operating	costs	and	ensure	demand	satisfaction	
by	controlling	pumping	in	real-time,	considering	storage	dynamics,	topology,	
physical	constraints,	stochastic	uncertainty	(water	demand,	energy	prices)



03 -

MPC design flow
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High-fidelity	simulation	model

MPC	
design

performance	index
&	constraints

real-time
code

(simplified)	control-oriented	
prediction	model

system	
identification

closed-loop	simulation

experiments

revis
e	MPC	s

etup

physical	modeling	+	
parameter	estimation

G(z)
u y

/* z=A*x0; */
for (i=0;i<m;i++) {
    z[i]=A[i]*x[0];
    for (j=1;j<n;j++) {
        z[i]+=A[i+m*j]*x[j];
    }
}

physical	process



MPC TOOLBOXES
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• MPC Toolbox (The Mathworks, Inc.)
(Bemporad, Ricker, Morari, 1998-present)

‣ Part of Mathworks’ official toolbox distribution
‣ Great for education and research

• ODYS Toolbox
(Bemporad, Bernardini, 2013-present)

‣ Provides flexible and customized MPC control design 
and seamless integration in production systems

‣ Real-time code written in plain C
‣ Designed for production

Kalman
filter

MPC

• Hybrid Toolbox 
(Bemporad, 2003-present)

‣ Free download:
‣ Great for research and education

http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox/

>	6k	downloads

http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox/
http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox/


Pros and CONS of MPC
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✓Extremely	flexible	control	design	approach:

– Prediction	model	can	be	multivariable,	w/delays,	time-varying,	w/	disturbances,	...

– Can	exploit	available	preview	on	future	references	and	measured	disturbances

– Handles	constraints	on	inputs	and	outputs

– Tuning	similar	to	Linear	Quadratic	Regulator	(LQR)

‣ Price	to	pay:

– Requires	a	(simple)	model	(experiments,	systems	identification,	linearization)

– Many	degrees	of	freedom	(weights,	horizons,	constraints,	...)	

– Requires	real-time	computations	to	solve	the	optimization	problem



Requirements for Deployment of MPC
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embedded	model-based	optimizer

mi
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x
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x

s.t
.

A

x

 b

1. Speed	(throughput):	solve	optimization	problem	within	sampling	interval

2. Robustness	(e.g.,	with	respect	to	numerical	errors)

3. Be	able	to	run	on	limited	hardware	(e.g.,	150	MHz)	with	little	memory	

4.Worst-case	execution	time	must	be	(tightly)	estimated	

5. Code	simple	enough	to	be	validated/verified/certified
(in	general,	it	must	be	understandable	by	production	engineers)

Requirements:



Quadratic programming
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min
z

1

2
z0Hz + x0(t)F 0z +

1

2
x0(t)Y x(t)

s.t. Gz  W + Sx(t)

• Linear	MPC	requires	solving	a	Quadratic	Program	(QP)

z =

2

6664

u0
u1
...

uN�1

3

7775

A	rich	set	of	good	QP	algorithms	is	available	today,	
and	a	lot	of	research	is	still	going	on	!

• Algorithms	for	QP	have	been	studied	since	the	1950’s	! (Beale,	1955)
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Fast gradient projection for (dual) QP
(Patrinos,	Bemporad,	IEEE	TAC,	2014)•Main	on-line	operations	involve	only	

simple	linear	algebra

• Convergence	rate:

theoretical

experimental

• Currently	extended	to	mixed-integer	problems

f(zk+1)� f⇤ 
2L

(k +2)2
kz0 � z⇤k2

• Tight	bounds	on	maximum	number	of	iterations

19(Naik,	Bemporad,	work	in	progress)

• Can	be	used	to	warm-start	other	methods



var ⇥ constr. GPAD AS ADMM FBN

4⇥ 16 332 µs (18) 120 µs (3) 1.42 ms (62) 208 µs (2)

8⇥ 24 1.1 ms (22) 446 µs (5) 4 ms (77) 396 µs (2)

12⇥ 32 2.59 ms (27) 1.19 ms (7) 8.25 ms (82) 652 µs (2)

Experiments with embedded QP
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• Active	set	(AS)	methods	are	usually	the	best	on	small	problems:
- excellent	quality	solutions	within	few	iterations
- less	sensitive	to	preconditioning	(=	behavior	is	more	predictable)
- no	need	for	advanced	linear	algebra	packages

(Patrinos,	Guiggiani,	Bemporad,	2014)*	FBN	=	Forward-Backwards	Netwon	(proximal	method)

*

*	GPAD	=	Dual	Accelerated	Gradient	Projection (Patrinos,	Bemporad,	2014)

*	ADMM	=	Alternating	Directions	Method	of	Multipliers (Boyd	et	al.,	2010)

Numerical Results - DSP Implementation

TMS320F28335 controlCARD
(Real-time Control Applications)

32-bit Floating Point (IEEE-754);

150MHz clock;

68KB Ram / 512KB Flash.

Benchmarking Problem: Brushless DC Motor Control

May 10, 2014 4 / 6



MPC In Finite-Precision Arithmetics

32-bit	Atmel	SAM3X8E	
ARM Cortex-M3	processing	
unit
84	MHz,	512	KB	of	flash	memory	
and	100	KB	of	RAM

(Patrinos,	Guiggiani,	Bemporad,	2013)

fixed
point

floating
point

fixed-point about 4x faster than floating-point

21

•Gradient	projection	works	in	fixed-point	arithmetics	

max

i
gi(zk)  2LD2

k+1

+ Lv✏
2

z +4D✏⇠ exponentially decreasing with 
number p of fractional bits

max constraint violation



(
x

k+1 = A(p(t))x
k

+B

u

(p(t))u
k

+B

v

(p(t))v
k

y

k

= C(p(t))x
k

+D

v

(p(t))v
k

min
U

1

2
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s.t. G(p(t))U  W (p(t)) + S(p(t))x(t)

Linear Parameter-Varying (LPV) MPC
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linear	prediction	
model

(convex)	Quadratic	Program	(QP)

• Can	be	extended	to	LTV	(Linear		Time-Varying)	prediction	models	

• LPV/LTV	models	can	be	obtained	from	linearization	of	nonlinear	models	
or	from	black-box	LPV	system	identification

All	QP	matrices	must	be	
constructed	on	line

• Weights,	horizon,	constraints	can	all	depend	on	current	parameter	p(t)



• Model	is	nonlinear	and	continuous-time
dx

dt

= f(x(t), u(t))
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Linearization and TIme-Discretization

23

discrete-time 
LPV model

A(t) B(t)

f(t) model matrices 
depend on 
current time t

• Conversion	to	discrete-time	linear	prediction	model

• Linearization	around	a	nominal	state	x(t)	and	input	u(t)	
(an	equilibrium,	a	reference	trajectory,	or	the	current	values)

dx

dt

(t+ ⌧) '
@f

@x

����
x̄(t),ū(t)

(x(t+ ⌧)� x̄(t))

+
@f

@u

����
x̄(t),ū(t)

(u(t+ ⌧)� ū(t)) + f(x(t), u(t))



dCA

dt
=

F

V
(CAf � CA)� CAk0e

��E
RT

dT

dt
=

F

V
(Tf � T ) +

UA

�CpV
(Tj � T )� �H

�Cp
CAk0e

��E
RT

• T : temperature inside the reactor [K] (state)

• CA : concentration of the reagent in the reactor [kgmol/m3] (state)

• Tj : jacket temperature [K] (input)

• Tf : feedstream temperature [K] (measured disturbance)

• CAf : feedstream concentration [kgmol/m3] (measured disturbance)

Example: LTV-MPC of a nonlinear CSTR system

•MPC	control	of	a	diabatic	continuous	stirred	tank	reactor	(CSTR)

24

•Objective:	manipulate	Tj	to	regulate	CA	
on	desired	set-point

• Process	model	is	rather	nonlinear:

concentration CA
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Model Predictive Control of Hybrid Systems

•Variables	are	discrete-valued

•Dynamics	=	finite	state	machine

•Logic	constraints,	rules

•Variables	are	real-valued

•Difference/differential	equations

•Linear	inequality	constraints

x 2 Rn

c

, u 2 Rm

c

x 2 {0,1}nb, u 2 {0,1}mb

0

1 0

1

00 01

11 10

1
0

0

1

x(k)u(k) continuous	
dynamical	
system

hybrid	
dynamical
system

cyber	system physical	system
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Hybrid Model Predictive Control

(Bemporad,	Morari	1999)Mixed	Logical	Dynamical	(MLD)	systems

(Torrisi,	Bemporad,	2004)Discrete	Hybrid	Automaton

• MPC	problem	can	be	solved	by	mixed-integer	programming	(MIP)	

• Excellent	public	domain/commercial	packages	exist	to	solve	MIP’s

continuous	&	
binary	variables

8
><
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http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox

Hybrid Toolbox (Bemporad,	2003+)

http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox
http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox


Hybrid MPC OF Induction of Escherichia Coli 

•Goal:	control	the	lactose	regulation	system	of	a	colony	of	E.	coli

27

(Julius,	Sakar,	Bemporad,	Pappas,	2007)

•Model,	measurements,	and	actuation	are	at	the	entire	colony	level

Hybrid model predictive control of induction of Escherichia coli

A. Agung Julius∗, M. Selman Sakar∗, Alberto Bemporad† and George J. Pappas∗

Abstract— The lactose regulation system of Escherichia coli
is known to exhibit a bistable behavior. The stable states
correspond to the phenotypical states of the system, induced
and uninduced. Stochastic modeling of the system enables
us to reproduce an experimentally observed phenomenon of
spontaneous transitions between the induced and uninduced
states. The average behavior of a colony of a large number of
cells can be accurately described by an abstract model of the
system, which is a two state Markov chain.

In this paper, we consider a control problem that involves
regulating the fraction of induction of a colony of Escherichia
coli. We use the abstract model to design a feedback controller
based on model predictive control strategy. Upon simulation,
we show that the model predictive control is superior to other
control strategies that we have designed before, in terms of less
fluctuation in the control input and less tracking error.

I. INTRODUCTION

The advance of genetic sensing and manipulation technol-
ogy has caused the field of biology to undergo a significant
shift in its paradigms. The possibility of manipulating ge-
netic information in living cells has arguably transformed
molecular biology and genetics from a largely analytical
science into a synthetic science. The possibility of acquiring
a vast amount of data (for example, with the availability
of genetic microarrays) has helped scientists identify very
complex biochemical and genetic networks.

In molecular biology, there are a few organisms that have
been designated as model systems [1]. Similarity in the
basic principles among many organisms leads biologists to
concentrate on several model systems that facilitate easy
comparison and sharing of research results. The bacteria
Escherichia coli are one of the model systems.

The lactose regulation system in E. coli [2] is one of the
most extensively studied examples of positive feedback in a
naturally occurring genetic network. The lac operon, which
encodes the lactose control system, is often used as a switch
to control genes in genetically engineered systems [3], [4].
As illustrated in the upper panel of Figure 1, two of its
three component genes encode enzymes (β-galactosidase and
permease) which contribute to lactose uptake respectively to
the synthesis of allolactose. In turn, allolactose acts as an
inducer for the operon itself.
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Fig. 1. The lactose network (top) and its modification with the gratuitous
inducer TMG (bottom)

The available experimental results, including those used
to validate the Yildirim-Mackey model [5], refer to “gra-
tuitous” induction by substances similar to lactose such as
thio-methyl galactosidase (TMG). Such gratuitous inducers,
which are not metabolized by the cell, are often preferred in
experimental settings because their presence does not affect
the growth rate. From the systems perspective, using TMG
instead of lactose also breaks one of the feedback loops in the
Yildirim-Mackey model, since β-galactosidase does not act
on TMG, and TMG itself can play the inducer role played by
allolactose in the full Yildirim-Mackey model, as illustrated
in the lower panel of Figure 1.

Multistability is a well known feature of positive autoregu-
lation in genetic networks [6]. The lactose regulation system
of E. coli is known to be bistable [5]. The two stable states of
the dynamics are modulated by the concentration of inducer
in the environment. Bistability of genetic regulation networks
has been exploited in synthetic systems biology, for example
in the celebrated design of genetic toggle switch [3].

Feedback control of biological systems is a very active
field. In personalized medicine, feedback control is used to
influence cellular processes. The need for treatment proce-
dures that are widely applicable and give satisfactory clinical
results for a variety of individuals with different steady
state and dynamic responses requires the use of feedback
mechanisms [7]. For every treatment policy there is an
inevitable tradeoff between drugs efficacy, organ health and
use of therapeutics. This makes optimal control solutions
attractive. Souza et al [8] and Kirschner et al [9] offer an
optimal control approach to HIV treatment. Jung et al [10]
apply optimal control theory to the treatments in a two-
strain tuberculosis model. Stengel et al [11] demonstrated
optimal control solutions to the innate immune response.
Another control method, model-based predictive control, is
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also advantageous if accurate models are used in controller
synthesis. This is so because predictive control provides us
an estimate of future behavior. For instance, Parker et al [12]
made a review of control algorithms for noninvasive moni-
toring and regulation in type I diabetic patients and showed
that model-based predictive control is an attractive choice
for blood glucose concentration regulation. There is a recent
attempt to apply external control to neuropharmacology [13].
Finally, we also find applications of control laws to build
effective strategies in gene therapies and tissue engineering
[14].

In this paper, we study the problem of controlling a colony
of E. coli by means of global sensing and actuation [15],
[16]. In this problem, we assume that we do not have access
to the state of individual cells. Rather, we assume that by
sensing we can only measure an averaged quantity across the
population. Global actuation means we can only manipulate
the environment of the whole colony without being able to
manipulate the bacteria individually. The control method that
we use is hybrid model predictive control [17] based on a
piecewise affine model of the colony dynamics. Similar con-
trol algorithms have been applied in several other application
domains, for example in automotive control systems [18],
and related theoretical aspects of stability have been recently
studied in [19].

Model predictive control has characteristics that make it
an attractive choice for biomedical systems. This is because
the controller architecture is particularly well suited to the
multivariable nature of these systems, as well as the inherent
constraints involved in the related control problems [20].

II. MATHEMATICAL MODEL OF THE LACTOSE

REGULATION SYSTEM OF E. COLI

A. ODE model

Yildirim and Mackey [5] proposed a biochemically
founded ordinary differential model of the lactose-induced
network shown in the upper panel of Figure 1. In our earlier
work [15], [16], we adopted the structure of this model and
applied it to the TMG-induced network (lower panel of the
same figure). The equations of motion for induction by TMG
(T ) are:

dM

dt
= αM

1 + K1(e
−µτM T (t − τM ))n

K + K1(e−µτM T (t − τM ))n
+ Γ0 − γ̃MM, (1a)

dB

dt
= αBe−µτB M(t − τB) − γ̃BB, (1b)

dT

dt
= αLP

Te

KTe
+ Te

− βLP
T

KL1
+ T

− γ̃LT, (1c)

dP

dt
= αP e−µ(τP +τB)M(t − τP − τB) − γ̃P P. (1d)

The variables M , P , and B signify the concentrations of
mRNA, permease, and β-galactosidase in the cell. We take
into account time delays due to transcription and translation.
Variables without an argument are taken at time t, time
delays are indicated by an explicit argument, e.g., M(t−τB)
is the value of the variable M delayed with τB .

The symbol Te in equation (1c) signifies the external TMG
concentration. If the system is to be viewed as an input-state
system, then Te can be thought of as an input to the system,
while the other four concentrations are the state variables.
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Fig. 2. The equilibria of the system given by (1). The middle range of Te

has three branches of equilibria.

The other symbols in the equation are constant parameters,
given by the Table I, together with the following relations

TABLE I

SYSTEM PARAMETERS

Value Unit Value Unit

µ 2.26 · 10−2 min−1 KTe
6.5·10−4 mM

γM 0.411 min−1 γB 8.33 · 10−4 min−1

γA 0.52 min−1 Γ0 1.0 · 10−6 mM/min

K 7200 αM 9.97 · 10−4 mM/min

τB 2.0 min K1 6.3 · 105 (mM)−2

KL1
0.36 mM αB 1.66 · 10−2 min−1

τP 0.83 min βL 546.32 min−1

τM 0.1 min αP 10.0 min−1

γL 1.52 min−1 γP 0.6274 min−1

αL 81 min−1 n 2

γ̃M = γM + µ, γ̃B = γB + µ, (2)

γ̃A = γA + µ, γ̃P = γP + µ. , (3)

where µ is the growth rate. The values of the constants
are based on those in [21] but have been modified to give
consistent behavior to the TMG model in the limit of a large
but finite cell population.

When the value of Te is maintained between 1.4 - 32 µM,
the system has three equilibria. Two of these equilibria are
stable, giving rise to bistability of the system. Also, varying
the value of Te causes a hysteresis behavior. See Figure 2
for the illustration.

B. Stochastic hybrid model

The upper and lower stable branches of the equilibria
correspond to the so called induced and uninduced states
of the bacteria. Experimental results have shown that in a
colony of bacteria, both states coexist with possibly different
distributions. Also, the system can spontaneously switch
between the two states [22]. These results underline the
necessity of expressing stochasticity in the model, if we want
to capture these phenomena.

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 ThC01.3

3914

Te = external concentration of TMG

internal concentration of TMG

Hybrid MPC OF Induction of Escherichia Coli 

28

• Bistable	lactose	regulation	system	of	E.	coli

Low state
(uninduced)

High state
(induced)

λ
1
(Te)

λ
2
(Te)
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Fig. 4. The relation between
the transition rates λ1 and λ2
of the Markov chain and Te.

In our earlier work, we expressed the stochasticity of the
system by constructing a stochastic hybrid system model of
the system [15], [16]. This stochastic hybrid model is based
on a modified Gillespie’s explicit τ -leaping algorithm [23].

In terms of stochastic differential equations, our hybrid
stochastic model can be written as follows.

dMt = dM̂t − dM̃t, (4a)

dBt = dB̂t − dB̃t, (4b)

dTt

dt
=

TeαLPt

KLe
+ Te

−
βLPtTt

KL1
+ Tt

− γ̃LTt, (4c)

dPt

dt
= αP e−µ(τP +τB) M(t−τP −τB)

CN
− γ̃P Pt. (4d)

Here the processes M̂t and M̃t are the Poisson processes
that are responsible for the creation and breaking up of the
messenger RNA molecules, respectively. Similarly, B̂t and
B̃t are the Poisson processes that are responsible for the
creation and breaking up of the β - galactosidase molecules,
respectively. The rates of these processes are state dependent,
and are given as follows.

λM̂ (t) = CN

[

αM

1 + K1(e−µτM T(t−τM ))
n

K + K1(e−µτM T(t−τM ))n
+ Γ0

]

, (5a)

λM̃ (t) = γ̃MMt, (5b)

λB̂(t) = αBe−µτBM(t−τB), (5c)

λB̃(t) = γ̃BBt, (5d)

where the conversion constant CN = 6.023 · 104 molecules
mM .

C. Two state Markov chain model

In our earlier work [15], [16], we also proposed an
abstraction for the stochastic hybrid model described in the
previous subsection. The fact that the cells can spontaneously
switch between the two phenotypical states (induced and
uninduced) is captured by modeling the system as a two-state
continuous time Markov chain, whose states are induced

and uninduced (see Figure 3). The transition rates between
the two states are assumed to be functions of the external
TMG concentration (Te) (see Figure 4).

Given the continuous time Markov chain model as in
Figure 3, we can compute the probability distribution of the
states as follows. Define xlo(t) and xhi(t) as the probability

fraction
of

induction

CONTROLLER

ext.
TMG

reference input

u(t) y(t)

y (t)r

Fig. 5. The control block diagram.

of finding the system at time t in the low and high state re-
spectively. The probability distribution satisfies the following
differential equation.

d

dt

[

xlo

xhi

]

=

[

−λ1(Te) λ2(Te)
λ1(Te) −λ2(Te)

] [

xlo

xhi

]

. (6)

III. INDUCTION CONTROL OF A COLONY OF E. COLI

The architecture of the control system that we discuss in
this paper is illustrated in Figure 5. The plant to be controlled
in a large colony of E. coli bacteria. The controller affects
the plant by adjusting of the external concentration of TMG
in the environment. Feedback information is read from the
plant in the form of a global quantity, which we consider
as the output of the control system. By this, we mean the
controller does not have any information about the individual
cells in the colony. Rather, the controller relies on sensing a
global quantity, for example, the fraction of induced cells in
the population. The control goal is to make the output track
a given reference trajectory or attain a desired level.

Control actuation by means of adjusting the external
concentration of TMG in the environment can be realized
as follows. Increasing the concentration can be done, for
example by injecting the enzyme into the plant. There are
a number of limitations associated to this method. First,
the concentration cannot be made arbitrarily high since it
can only be as high as the concentration of the injected
enzyme. Second, the concentration cannot evolve arbitrarily
fast. Decreasing the external concentration can be done, for
example through dilution of the enzyme in the plant.

Sensing activity level of the colony can be done through
sensing of certain protein concentrations in the cells. A
certain protein called the gfp (green fluorescent protein) can
be encoded in the lac operon. When the genes in the operon
are expressed, gfp is also produced. Thus, the concentration
of gfp in the cell can be used as an indicator for the activity
of the cell. The protein gfp emits green light. Therefore we
can use the luminescence of the cells as a way to measure
its level of activity. This is actually a standard procedure in
synthetic biology [3], [24].

In [15], [16], we have proven that the design of a feedback
controller for such a control problem can be cast as the
following problem.
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In our earlier work, we expressed the stochasticity of the
system by constructing a stochastic hybrid system model of
the system [15], [16]. This stochastic hybrid model is based
on a modified Gillespie’s explicit τ -leaping algorithm [23].

In terms of stochastic differential equations, our hybrid
stochastic model can be written as follows.

dMt = dM̂t − dM̃t, (4a)

dBt = dB̂t − dB̃t, (4b)

dTt

dt
=

TeαLPt

KLe
+ Te

−
βLPtTt

KL1
+ Tt

− γ̃LTt, (4c)

dPt

dt
= αP e−µ(τP +τB) M(t−τP −τB)

CN
− γ̃P Pt. (4d)

Here the processes M̂t and M̃t are the Poisson processes
that are responsible for the creation and breaking up of the
messenger RNA molecules, respectively. Similarly, B̂t and
B̃t are the Poisson processes that are responsible for the
creation and breaking up of the β - galactosidase molecules,
respectively. The rates of these processes are state dependent,
and are given as follows.

λM̂ (t) = CN

[

αM

1 + K1(e−µτM T(t−τM ))
n

K + K1(e−µτM T(t−τM ))n
+ Γ0

]

, (5a)

λM̃ (t) = γ̃MMt, (5b)

λB̂(t) = αBe−µτBM(t−τB), (5c)

λB̃(t) = γ̃BBt, (5d)

where the conversion constant CN = 6.023 · 104 molecules
mM .

C. Two state Markov chain model

In our earlier work [15], [16], we also proposed an
abstraction for the stochastic hybrid model described in the
previous subsection. The fact that the cells can spontaneously
switch between the two phenotypical states (induced and
uninduced) is captured by modeling the system as a two-state
continuous time Markov chain, whose states are induced

and uninduced (see Figure 3). The transition rates between
the two states are assumed to be functions of the external
TMG concentration (Te) (see Figure 4).

Given the continuous time Markov chain model as in
Figure 3, we can compute the probability distribution of the
states as follows. Define xlo(t) and xhi(t) as the probability
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of finding the system at time t in the low and high state re-
spectively. The probability distribution satisfies the following
differential equation.

d

dt

[

xlo

xhi

]

=

[

−λ1(Te) λ2(Te)
λ1(Te) −λ2(Te)

] [

xlo

xhi

]

. (6)

III. INDUCTION CONTROL OF A COLONY OF E. COLI

The architecture of the control system that we discuss in
this paper is illustrated in Figure 5. The plant to be controlled
in a large colony of E. coli bacteria. The controller affects
the plant by adjusting of the external concentration of TMG
in the environment. Feedback information is read from the
plant in the form of a global quantity, which we consider
as the output of the control system. By this, we mean the
controller does not have any information about the individual
cells in the colony. Rather, the controller relies on sensing a
global quantity, for example, the fraction of induced cells in
the population. The control goal is to make the output track
a given reference trajectory or attain a desired level.

Control actuation by means of adjusting the external
concentration of TMG in the environment can be realized
as follows. Increasing the concentration can be done, for
example by injecting the enzyme into the plant. There are
a number of limitations associated to this method. First,
the concentration cannot be made arbitrarily high since it
can only be as high as the concentration of the injected
enzyme. Second, the concentration cannot evolve arbitrarily
fast. Decreasing the external concentration can be done, for
example through dilution of the enzyme in the plant.

Sensing activity level of the colony can be done through
sensing of certain protein concentrations in the cells. A
certain protein called the gfp (green fluorescent protein) can
be encoded in the lac operon. When the genes in the operon
are expressed, gfp is also produced. Thus, the concentration
of gfp in the cell can be used as an indicator for the activity
of the cell. The protein gfp emits green light. Therefore we
can use the luminescence of the cells as a way to measure
its level of activity. This is actually a standard procedure in
synthetic biology [3], [24].

In [15], [16], we have proven that the design of a feedback
controller for such a control problem can be cast as the
following problem.
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Controller design: Given a plant model

d

dt

[

x1

x2

]

=

[

−λ1(u) λ2(u)
λ1(u) −λ2(u)

] [

x1

x2

]

, (7a)

y(t) = x2(t), (7b)

design a controller that reads the output y(t) and outputs the
control input u(t), such that the output of the system y(t)
tracks a given reference signal yr(t).

IV. HYBRID MODEL PREDICTIVE CONTROL SOLUTION

In this paper, we propose a model predictive control solu-
tion to the above mentioned control problem. The underlying
idea is to approximate the plant model (7) by a piecewise
linear model that is obtained by assuming that λ1(u) and
λ2(u) are piecewise constant functions

λi(u) = λj
i if uj−1 ≤ u < uj , j = 1, . . . , 6, i = 1, 2 (8)

where the intervals [uj−1, uj) and the corresponding values

of λj
i are given by Table II. The values of λ1 and λ2 in the

table are determined from the identified rates as in Figure 4.

TABLE II

TRANSITION RATES AS PIECEWISE CONSTANT FUNCTIONS OF u.

u[10−3mM] λ1(u)[min−1] λ2(u)[min−1]
[1.4, 1.5) 8.68 · 10−4 5.91 · 10−3

[1.5, 1.6) 9.27 · 10−4 3.61 · 10−3

[1.6, 1.7) 1.13 · 10−3 2.36 · 10−3

[1.7, 1.8) 1.39 · 10−3 1.54 · 10−3

[1.8, 1.9) 1.67 · 10−3 9.53 · 10−4

[1.9, 2.0) 1.93 · 10−3 5.54 · 10−4

The control input u(t) is assumed to be a piecewise
constant signal that changes value every interval of length
Ts. Thus, the idea is to compute and (if necessary) alter
the control input value once every sampling interval Ts. The
model described by (7), (8) and Table II is then discretized
as follows.

x ((n + 1)Ts) = eA(u(nTs))Tsx(nTs), (9a)

u((n + 1)Ts) = u(nTs) + ∆n, (9b)

y(nTs) = x2(nTs), (9c)

for any n ∈ Z+. The matrix A(u(nTs)) is given by

A(u(nTs)) =

[

−λ1(u(nTs)) λ2(u(nTs))
λ1(u(nTs)) −λ2(u(nTs))

]

,

where the values of λ1 and λ2 are given in Table II. The
term ∆n represents the update of the control input value.

At any time t = nTs, the update of the control input
is computed by solving the following receding horizon
optimization problem (RCOP) iteratively.
Receding horizon optimization problem (RCOP). Find
∆n+k, k ∈ {0, . . . , N − 1} that minimize the cost

J =
N−1
∑

k=0

|y((n + k)Ts) − yr((n + k)Ts)| + γ |∆n+k| ,

(10)
subject to

timet t+Ts ... t+NTs

implemented control input

optimization horizon

Fig. 6. The receding horizon optimization problem. At any time t, only
the first interval of the computer control input is implemented.

• the initial condition x(nTs)
• the system dynamics ((8), (9) and Table II ), and
• for k ∈ {0, . . . , N − 1},

|∆n+k| ≤ 2 · 10−3,

1.4 · 10−3 ≤ u((n + k)Ts) ≤ 2 · 10−3.

Variable N defines the length of optimization horizon.
Although the optimization is solved for N steps, only the
control input value of the first interval is actually imple-
mented. At the next step, the RCOP is re-initialized with the
actual state as the initial condition. A schematic describing
the algorithm is shown in Figure 6.

The cost function J in (10) is designed such that the
tracking error y−yr is minimized. However we also include
a term that carries a penalty for ∆. The idea behind this
inclusion is to make sure that the update of the control input
does not fluctuate too much.

One advantage of using model predictive control over the
other control strategies that we have designed in [15], [16]
is that we can impose that the control input value does
not fluctuate a lot while making sure that the output of
the system (the fraction of induction) tracks the reference
value. Although at sampling times the control input can be
discontinuous, if the sampling interval Ts is large enough,
the control can still be realistically implemented.

V. SIMULATION RESULTS

We simulate the application of the MPC controller on a
plant with 5000 cells. We fix the horizon length N = 2
and the weight γ = 10 in the cost function (10). The
reference signal is fixed at 0.5. That is, we aim at attaining
and maintaining a 50% induction fraction.

The hybrid dynamical system defined by (8), (9) and Table
II is modeled in HYSDEL [25] and translated into a mixed
logical dynamical system [17] having 3 continuous states,
1 continuous input, 2 continuous outputs, 15 continuous
auxiliary variables, 5 binary variables, and 80 mixed-integer
linear inequalities.

Figure 7 shows the comparative simulation results of both
the abstract model and stochastic hybrid model of the colony
of bacteria with 5000 cells for two initial conditions, fully
induced and fully uninduced. The sampling time is fixed
at Ts = 10 min. We can see that the desired fraction of
induction of 50% is attained and maintained.

In Figure 7 we can also see that the simulation results
using the abstract model and the stochastic hybrid model are
close. This demonstrates the effectiveness of using the much
simpler abstract model in designing the controller, despite of
the application on the stochastic hybrid model.
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Fig. 4. The relation between
the transition rates λ1 and λ2
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In our earlier work, we expressed the stochasticity of the
system by constructing a stochastic hybrid system model of
the system [15], [16]. This stochastic hybrid model is based
on a modified Gillespie’s explicit τ -leaping algorithm [23].

In terms of stochastic differential equations, our hybrid
stochastic model can be written as follows.

dMt = dM̂t − dM̃t, (4a)

dBt = dB̂t − dB̃t, (4b)

dTt

dt
=

TeαLPt

KLe
+ Te

−
βLPtTt

KL1
+ Tt

− γ̃LTt, (4c)

dPt

dt
= αP e−µ(τP +τB) M(t−τP −τB)

CN
− γ̃P Pt. (4d)

Here the processes M̂t and M̃t are the Poisson processes
that are responsible for the creation and breaking up of the
messenger RNA molecules, respectively. Similarly, B̂t and
B̃t are the Poisson processes that are responsible for the
creation and breaking up of the β - galactosidase molecules,
respectively. The rates of these processes are state dependent,
and are given as follows.

λM̂ (t) = CN

[

αM

1 + K1(e−µτM T(t−τM ))
n

K + K1(e−µτM T(t−τM ))n
+ Γ0

]

, (5a)

λM̃ (t) = γ̃MMt, (5b)

λB̂(t) = αBe−µτBM(t−τB), (5c)

λB̃(t) = γ̃BBt, (5d)

where the conversion constant CN = 6.023 · 104 molecules
mM .

C. Two state Markov chain model

In our earlier work [15], [16], we also proposed an
abstraction for the stochastic hybrid model described in the
previous subsection. The fact that the cells can spontaneously
switch between the two phenotypical states (induced and
uninduced) is captured by modeling the system as a two-state
continuous time Markov chain, whose states are induced

and uninduced (see Figure 3). The transition rates between
the two states are assumed to be functions of the external
TMG concentration (Te) (see Figure 4).

Given the continuous time Markov chain model as in
Figure 3, we can compute the probability distribution of the
states as follows. Define xlo(t) and xhi(t) as the probability

fraction
of

induction

CONTROLLER

ext.
TMG

reference input

u(t) y(t)

y (t)r

Fig. 5. The control block diagram.

of finding the system at time t in the low and high state re-
spectively. The probability distribution satisfies the following
differential equation.

d

dt

[

xlo

xhi

]

=

[

−λ1(Te) λ2(Te)
λ1(Te) −λ2(Te)

] [

xlo

xhi

]

. (6)

III. INDUCTION CONTROL OF A COLONY OF E. COLI

The architecture of the control system that we discuss in
this paper is illustrated in Figure 5. The plant to be controlled
in a large colony of E. coli bacteria. The controller affects
the plant by adjusting of the external concentration of TMG
in the environment. Feedback information is read from the
plant in the form of a global quantity, which we consider
as the output of the control system. By this, we mean the
controller does not have any information about the individual
cells in the colony. Rather, the controller relies on sensing a
global quantity, for example, the fraction of induced cells in
the population. The control goal is to make the output track
a given reference trajectory or attain a desired level.

Control actuation by means of adjusting the external
concentration of TMG in the environment can be realized
as follows. Increasing the concentration can be done, for
example by injecting the enzyme into the plant. There are
a number of limitations associated to this method. First,
the concentration cannot be made arbitrarily high since it
can only be as high as the concentration of the injected
enzyme. Second, the concentration cannot evolve arbitrarily
fast. Decreasing the external concentration can be done, for
example through dilution of the enzyme in the plant.

Sensing activity level of the colony can be done through
sensing of certain protein concentrations in the cells. A
certain protein called the gfp (green fluorescent protein) can
be encoded in the lac operon. When the genes in the operon
are expressed, gfp is also produced. Thus, the concentration
of gfp in the cell can be used as an indicator for the activity
of the cell. The protein gfp emits green light. Therefore we
can use the luminescence of the cells as a way to measure
its level of activity. This is actually a standard procedure in
synthetic biology [3], [24].

In [15], [16], we have proven that the design of a feedback
controller for such a control problem can be cast as the
following problem.
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Fig. 7. Simulation results using MPC controller with sampling time Ts =
10min. Top: Fraction of induced cells. The dashed lines are the results
obtained from the abstract model. The solid lines are the results from the
stochastic model. Bottom: The level of Te for both simulations (in mM)
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Fig. 8. A dynamic histogram of the distribution of the internal concentration
of TMG in the cells when the MPC controller is used

The hybrid MPC controller was designed and simulated
through the Hybrid Toolbox for Matlab [26] using the mixed-
integer linear programming solver GLPK [27]. The CPU time
for controller evaluation is on average 32 ms (280 ms in the
worst case) on a 1.2 GHz laptop computer running Matlab
7.3, which is several orders of magnitude smaller than the
sampling time Ts = 10 min.

Figure 8 shows a dynamic histogram of the internal
concentration of TMG in the cells, when the MPC controller
is used with fully uninduced initial condition. We can see
that at the beginning, the distribution is concentrated at the
uninduced state. As time passes, a second cluster, which
corresponds to induced cells appears. Note that, after 350
minutes the higher cluster slightly shifts to the right and sta-
bilizes there with small deviations, as it is also demonstrated
in the left section of Figure 7.

Intuitively, reducing the sampling time Ts leads to better
tracking performance at the cost of (possibly) more fluctua-
tion of the control input and more computation. In real time
applications, it might not be possible to change the control
input too frequently. Therefore, the choice of sampling time
should be a balance between the real world limitations and
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Fig. 9. Simulation results for different Ts values. Top: Fraction of induced
cells after 350 minutes. Bottom: The level of Te for both simulations (in
mM) Left: Ts=10min. Right: Ts=2min.

the steady state performance. We can observe this trade-off
in Figure 9. While the steady state tracking error is ±2%
for the model with Ts=10min, it is ±1% for the model with
Ts=2min.

In a previous work [16], we have implemented three
different controllers, namely on-off controller, flow controller
and hybrid PI controller on the same model. We showed that
hybrid PI controller is superior to the other two strategies
with respect to the steady state tracking error. However, as
it is shown in Figure 10, the output variation and the steady
state tracking error of the MPC controller is smaller than that
of the hybrid PI controller. In addition, in MPC controller the
external control input follows a much more regular pattern
compared to hybrid PI contoller which can also be seen in
Figure 10. Unlike hybrid PI controller, in MPC controller
scheme, the changes in input occur in a reasonable time scale
which is an important issue for possible applications.

The only drawback of MPC control is its computational
cost. As it involves a receding horizon optimization problem
(RCOP) as described in the previous section. However, we
only need to solve the RCOP at every sampling time Ts,
which is quite long due to the slow dynamics of the system,
and much larger than the CPU time required by a personal
computer to solve the mixed-integer programming problem
associated with RCOP. With the ever increasing pervasive-
ness of computation technologies, it is realistic to say that
the designed hybrid MPC controller can be implemented in
a real application.

VI. CONCLUDING REMARKS

In this paper we present a hybrid model predictive control
(MPC) based feedback strategy for regulating the induction
fraction of a colony of Escherichia coli. The model used in
the MPC scheme is the abstract model of the system designed
to describe the colony scale dynamics [15], [16]. The abstract
model, which is a finite state Markov chain (Figure 3), is
much simpler than the full stochastic hybrid model of the
biochemical dynamics of the lactose regulation system (4).
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• Closed-loop	results

– switched	linear	system

– constraints	on	input	Te	and	dTe/dt	

– penalties	on	tracking	error	y-yr		and	
input	rate	dTe/dt

– MPC	controller	developed	with
Hybrid	Toolbox	in	MATLAB

– Mixed-Integer	Linear	Program	solver	GLPK

– solution	time:	32	ms	(worst	case=280	ms)	
on	1.2	GHz	laptop

– sampling	time	=	10	min



• MPC	can	easily	handle	multivariable	control	problems	with	constraints	in	an	
optimized	way

• Easy	to	design	and	reconfigure,	and	to	handle	uncertainty

Conclusions

30

• Long	history	of	success	in	the	process	industries	now	
spreading	to	the	automotive	industry	(and	others)

http://www.odys.it

Is	MPC	a	good	control	technology	
for	life-support	systems	?

YES.

•MATLAB	design	tools	and	production-ready	C-code	are	available	
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