8 – 9 June 2016 Lausanne Switzerland

Science and Technologies on Regenerative Life-Support

Session 3: Air Recycling

Cultivation of microalgae for advanced closed life support systems as a technical and biological challenge

S. Belz (University of Stuttgart, Institute of Space Systems, Germany)

N. Henn (DLR Space Agency, Germany)

June 8, 2016

Content

- Why apply microalgae in space ?
 - Humans and microalgae
- Microalgae cultivation in photobioreactors
- Long term cultivation
- Long term cultivation in space

Space Exploration Destinations

terpusivalent System Mass

ESM =
$$m_{fix}$$
 + $(V \cdot V_{eq} + P \cdot P_{eq} + C \cdot C_{eq}) + m' \cdot t$
| resupply mass
| carbon loops
| nesis → plants and algae

"Symbiotic" Relationship

Microalgae as food source

Euglena

Nannocloropsis

chlorella

Phaeodactylum

Chlamydomonas

Nostoc

Spirulina

Haematococcus

Life Support System architecture including *photobioreactors*

Our favourite: Chlorella vulgaris

- Immotile, single cell, spherical shape
- Not forming complex agglomerates
- Wide range for T, pH and CO₂
- Growth controllable by selective lighting strategy
- Cultivation and proliferation controllable by medium composition
- non-axenic cultivation
- Space experience up to 40 days

vortex street

tubular

flow field membrane

Cultivation in photobioreactors

Terrestrial flat plate airlift reactor at IRS (from company Subitec, Stuttgart)

... cultivation at high cell densities (high biomass in low volume)

1: growth f(x)

2: growth rate f'(x)

3: continuous cultivation

Cultivation parameters:

- ➤ CO₂ concentrations
- \triangleright max. O₂ concentrations
- nutrients (ammonium/nitrate, phosphate, FeCi, DSN medium, ...)
- light(ing)
- non-axenic environment
 good growth conditions for
 Chlorella beside other MOs

- 1: growth f(x)
- 2: growth rate f'(x)
- 3: continuous cultivation

Biological questions:

- cell morphology
- biomass composition
- cell-cell interaction
- photosynthetic performance
 (O₂ synthesis rate)
- regeneration potential
- genetic evolution under space conditions (μg, radiation)

... biology defines the cultivation requirements

Microalgae growth

Engineering questions:

- Ensure a controlled environment
- nutrients supply
- lighting
- gas exchange(CO₂ supply, O₂ removal)
- thermal control
- media/solution control
- harvesting and stowage (downstream processing)

long term exploration missions

=

long term and stable cultivation

... Engineering: building a PBR system for long term and stable cultivation

Long term cultivation in PBR (airlift)

- Chlorella vulgaris
- long term cultivation (cont./batch mode, regeneration/stability)

Long term cultivation in PBR (airlift)

- Chlorella vulgaris
- long term cultivation (cont. mode, regeneration/stability)

Long term cultivation in PBR (airlift)

- Scenedesmus obliquus
- long term cultivation (cont. mod, regenerated nitrate source)

Long term cultivation in space

in an existent
LSS infrastructure

- PBR@LSR: a technology demonstration experiment on ISS for long term cultivation of *C. vulgaris*
 - Hybrid link realized by CO₂ supply from LSR (CO₂ interface)
 - Long-term cultivation (180 days)
 - Functionality, feasibility, performance, stability

Long term cultivation in space

- Reliable and robust PBR system design
 - Reactor chamber
 - Pumped algae medium loop
 - LED lighting
 - Gas management
 - Gas exchange through membrane
 - Thermal control
 - Liquid exchange (inoculation, feeding and harvesting, termination)
 - Algae storage, transport, backup culture

8 - 9 June 2016 Lausanne Switzerland

... thank you for your attention ...

Long term cultivation in space

- Preparation on ground
- very stable breadboard

$$RQ = c_{02}/c_{CO2}$$

$$RQ_{FPA} = 0.3-0.4$$

■ RQ = 1:

$$1 \text{ kg CO2} \rightarrow 0.72 \text{ kg O2}$$

$$6 \text{ CO}_2 + 6 \text{ H}_2\text{O} \xrightarrow{\text{h}\nu} \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{ O}_2$$

Real data for gas rates