

Electrochemical systems as core engines of the MELiSSA loop

Korneel Rabaey, Amanda Luther, Marlies Christiaens and Peter Clauwaert

Lausanne, June 8th 2016

Center for Microbial Ecology and Technology (CMET) Ghent University

Needed!

- Acid
- Base
- Oxygen
- Hydrogen peroxide
- Anti-fouling agents
- Energy

Unwanted!

- Viruses
- Bacteria
- Calcium and Magnesium in wrong place
- Trace contaminants
- Recalcitrant organics
- Simple organics: VFA

2.85 kg NaOH needed per kg NH₃-N nitrified
~60 g N/ISS.d needs ~171 g/d

0.16 kg NaOH needed per kg organics-C fermented ~2400 g C/ISS.d needs ~130 g/d

~5 kg H₂O₂ needed per kg organics-C oxidized ~2400 g C/ISS.d needs ~12500 g/d

one-trick pony

Syllabification: one-trick po•ny

noun *informal*: A person or thing with only one special feature, talent, or area of expertise.

An electrochemical cell

- Anode
 - Oxidation occurs
- Cathode
 - Reduction occurs
- Separator
 - Ion exchange membrane
 - Cations
 - Anions

Tim Lacoere

- Input:
 - -~3.3 kWh
 - 1.73 kg NaCl
- Output
 - 1 kg chlorine
 - 1.1 kg NaOH
 - $-(H_2)$

WATER RESEARCH 45 (2011) 4951-4959

Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes

Arseto Y. Bagastyo, Jelena Radjenovic^{*}, Yang Mu, René A. Rozendal, Damien J. Batstone, Korneel Rabaey

Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia

ARTICLE INFO

ABSTRACT

Article history: Received 23 December 2010 Received in revised form Reverse osmosis (RO) membranes have been successfully applied around the world for wastewater reuse applications. However, RO is a physical separation process, and besides the clean water stream (permeate) a reverse osmosis concentrate (ROC) is produced, usually representing 15-25% of the feed water flow and containing the organic and incr-

BILL&MELINDA GATES foundation

A bioelectrochemical cell

- Anode
 - Oxidation occurs
- Cathode
 - Reduction occurs
- Separator
 - Ion exchange membrane
 - Cations
 - Anions

Microbial fuel cell – energy from wastewater

Current through VFA Low cell yield

http://cambrianinnovation.com/solutions/ecovolt/

Microbial electrosynthesis

Already at titers >0.5 M acetic acid, and production rates >0.2 kg acetic/m².d

ISS – consumes 75-90 kW. 1 kW for a day: At 1V transfer 895 mol electrons at 5V transfer 179 mol electrons Organics conversion: E_{AN} OV, E_{CA} -1V Realistic, stable current ~25 A m – 1 day: 0.6 kWh consumed, 168 g acetate removed 3.5 kWh per kg organics removed. BUT: At 5 g/L organics, 35L water treated At cathode 0.9 kg NaOH produced + 250L H, gas or 0.38 kg H₂O

EC performance with real urine

Luther et al. Wat Res 2015

Single cell protein

Matassa et al. 2015

Challenges

- Longevity and selectivity of membranes
- Specificity of electrode reactions

– DSA

- Bio-anode
- Reactor engineering, particularly in context of solids handling

Enablers

- Ability to drive whole cycle with electricity, instead of chemicals
- Biology increasingly understood
- High level of controllability
 - Realtime
 - No "sensor" failures
- Systems simple in approach
- Self-cleaning

European Research Council Established by the European Commission

CMET

support good ideas

Caravel-Ivan Henriques, 2016

