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Managing water supply
for terrestrial life support:
1.Surface water
2.Groundwater
3.Seawater
4.\Wastewater reuse

~



Value of wastewater (‘used water’)

. Total
Potential Per m3 Market or m?
recovery sewage prices P

sewage
Organic carbon 0.10 kg 0.200 €/kg 0.020 €
Methane 0.14 m3 0.338 €/m3CH, 0.047 €
Nitrogen 0.05 kg 1.0 €/kg 0.050 €
Phosphorus 0.01 kg 0.7 €/kg 0.007 €
Water 1ms3 0.250 €/m?3 0.250 €

ome: A potential value ~ 0.4 €/m

mainly as “water”

3 (Verstraete & Vlaeminck, 2011)



Managing water supply

for extraterrestrial life support:

1.Terrestrial re-supply
2.Wastewater reuse

3. In-situ resource mining (?)

(redrafted after Lamaze & Rebeyre)
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Life support

Inputs:

O, (0.84 kg,
from

(
Food (1.3 kQ)

Co,

(per crew member per day) | |
Safe reuse Microbial and

chemical
contaminants

=

Disposal - -

Energy (solar), H,O and chemicals driving the conversions



Water in space missions

1 astronaut: 12 L d! water

Crew: 6 members
Flight duration: 3 year

79 tonnes water
VS.

ISS: 420 tonnes
Heaviest launcher: 9 tonnes

Regenerative —
Biological/physicoche
mical (WTUB)

Mass payload

Non-regenerative
(Space shuttle)

Long missions need reuse

Mission duration

(Adapted from Lasseur et al. 2007)

Confidential — Do not distribute



Life Support in Space.:
Objectives depend on type of mission

" 4

ol

Orion MPCV




The commandments of regenerative life support

Recycling shall be done...

1. At high efficiency

2.In a compact manner (low volume; fast processes)
3.In a light manner (low mass)

4.Consuming few energy

5.Consuming few chemicals

6.Imposing minimal risk to the crew (safety)

7.At high reliability/robustness

8. With limited buffer capacity

9. With limited crew time

10.Under Space compatible conditions (radiation/microgravity)

. () T Confidential — Do not distribute



H,O: biggest impact on mass flow

-> first priority for recycling

-> |s already (partly) ongoing already at ISS

' Gy .m Confidential — Do not distribute



Water use in Space

Short mission:

- Drinking water

- Hygiene water (hand-

washing, shower, etc.)

- Food water (to hydrate
food or for cooking)

- Water for oxygen

production (electrolysis)

Long mission, extra.:

- Service water (laundry,
dish-washer, etc.)

- Water for food production

Parameters ESA Drinking | ESA Hygiene
water standard | water standard

pH 6.5-8.5 5.0-8.5

Conductivity mS.cm*

(mS / cm) 0.75 3

Turbidity (NTU) NTU 2.5 10

TOC (mg/L) mg/L 0.5 10

NH4" (ppm) ppm 0.5 0.5

Bacteria

Total count at 37 °C | CFUxmI'x48h 0 0

Total count at 22 °C | CFUxmI*x48h 1 1

Enteric bacteria CFU x 100 mI* 0 0

Human pathogens CFU x 100 mF* 0 0

(Advanced Life Support Baseline Values and Assumptions Document - Architecture Study for
Sustainable Lunar Exploration CDF Study Report)

Water use Units Nominal value | Quality required
Drink water KgCM/d |20 Potable
Food water Kg/CWM/d | 1.909 Potable
Hygiene [from R 16] Kg/CM/d | 10 Hygiene

Table 1 Water requirements per crew’




Wastewater generated in Space

Short mission:

- Respiration/transpiration crew:

condensate
- Urine

- Grey water (from hygiene activities)

- Sabatier water (CO,, + 4H, -> 2H,0 + CH,)

Extra for long mission:
- Black water (from toilet

flush)

- Service wastewater
(laundry, dish-washer, etc.)

- Transpiration water (food
production with plant)

Water source Units Nominal value | Waste water type
Faecal Water Kg/CWM/d | 0.091 Black water
Urine water (1SS value) KgCMd |12 Yellow water
Urine flush water Kg/CM/d (0.3 Yellow water
Condensate water [from R 16] KgCMd [1.5 Grey water
Hygiene water [from Table 1] Kg/CM/d | 10 Grey water

Table 2 Wacste water requirements per crew

(Advanced Life Support Baseline Values and Assumptions Document -

Architecture Study for Sustainable Lunar Exploration CDF Study Report)

11




State of the art - Water in Space and MELISSA

ISS MELiISSA
Reuse of Reuse of:
e Urine e Urine (alternative technology)
« Condensate « Condensate (alternative technology)
e Sabatier water  Grey water (from hygiene activities)

« Black water (from toilet flush)
(Quality monitoring)

Solutions integrating treatment of
several streams

(Quality monitoring and risk
management)

12
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Water treatment in ISS (US segment)

UsoscasN ) Urine |, [URINEPROCESSOR :
| ASSEMBLY (UPA) '
CREW »
- drinking | Vapor Compression I
%%f?g) ab ' Distillation (VCD) I
P : Distillate |
; ASSEMBLY (WPA)
. *Rotary Gas Separator '
| +Particulate Filter |
. « Multifiltration Beds : Water
| + Catalytic Oxidation Reactof |
Potabie water ' I
mo L oebleraler .. S
- Oxygen Generation System (OGS) '
! OXYGEN GENERATOR CO2REDUCTION '
I ASSEMBLY (OGA) Hydrogen SYSTEM(CRS) I
* | +Solid Polymer 1 +Sabatier Reactor .
%2%?8;%"3 { l Electrolysis (SPE) |
Oxygen | "
% ﬂ Carbon Dioxide O -
) P—

Carter et al. 2012 | averboard




Current ISS water treatment
e Urine:
e Relatively high amounts of inorganic compounds (salts, ammonia) and
biodegradable carbon -> scaling and fouling

e Vapor compression distillation (VCD)

* relatively high energy demand (7-12 kWh/m?3)

e 70% water recovery (designed for 80%, but limited in Space due to scaling)
* Pre-treatment (biological inactivation): ‘nasty’ chemicals (e.g. CrO;,)

Scaling in evaporator

e Condensate and Sabatier water (and urine distillate):
* relatively low levels of chemicals contaminants -> technically less challenging to
treat
* filter (particles) — multifiltration beds (inorganics & organics) - catalytic reactor
(organics) —ion exchange (mineralisation) — disinfection (biocide + pasteurization)



ISS — water quality monitoring and risk management

1. Basic water quality monitoring is in place

» Key analyses are off-line

* Frequency of monitoring is low

* Analysis is limited to a simple chemical characterization and bacterial counting

2. However, microbial contamination occurs

* To our knowledge, no pathogen has ever been detected in ISS water loop but
microbial contamination can be found in recycled water.

* Recovered organisms from the ISS water system show resistance to:
* heavy metals (i.e. nickel leaching from stainless steel tubing)
* biocides currently used (such as iodine).

3. And risk management opportunities are lacking

* |ISS water recycling systems are not designed taking into account microbial risk:
there is no possibility to fully disinfect a water recycling system.

-> there is room for improvement to guarantee crew health, especially at increased
levels of recycling



State of the art - Water in Space and MELISSA

ISS MELiISSA
Reuse of Reuse of:
e Urine * Urine (alternative technology)
« Condensate  Condensate (alternative technology)
o Sabatier water  Grey water (from hygiene activities)

« Black water (from toilet flush)
(Quality monitoring)

Solutions integrating treatment of
several streams

(Quality monitoring and risk
management)

16



Urine -> nitrification Grey water -> membranes
(UF/NF/RO)

MELISSA pilot plant Microbial water
treatment

| (== 1 et l P
-Core water
recycling system

Water Treatment Unit Breadboard (WTUB):
Urine — condensate — grey water

-> nitrification
-> membranes (UF/NF/RO)
+
-> crystallization

. . 17
-> electrodialysis



CORRAERCUL MNERA TED WATER

Core water recycling system: e oaee
grey water + condensate

Combination of:

’ »
1. Ultra-filtration (UF)
2. Two/three reverse osmosis (RO) steps
15 L% Prefirction 100 um
pt -4
— 1Lk
U] 0 B3
SIrna wany

Cosdaratice ndar

_i -

DL s L

@ esa-=u== =+=nnnz==ms=::=m |CES conference 2004 - Paper number 2004-01-2352




e Fully automated breadboard (including
drain)

e 6 months continuous operation on “real”
shower water

Water recovery
up to 95%




PARAMETERS

DRINKING WATER

HYGIENE WATER

RECOVERED

ESA STANDARD ESASTANDARD WATER
H 6.3 - 8.3 3-8 6.2-7.8
Conductivity imS.cm™) (.75 3 (.01
Turbidity (NT1) 25 ) (.25
TOC (ppm) 05 10 C13-27 0
Oxidative power (ppm) - 230
F {ppm| | ) 0.8
Cl (ppm) 200 [ 00) ||
Ny (ppm) 15 S 04
POy (ppm) 3 S 0.2
S04 (ppm] 250 TBD N
Na (ppm) |50 750 |8
K' (ppm) 2 |20 0.1
NH; (ppm) 0.3 0.3 0.1

||~ Quality of recovered water matches ESA hygiene water

standards



Concordia - The IPEV/PNRA station:

Validation on grey water

Isolated and confined

Antarctic agreement: treat wastes produced on site

Summer: -30°C: Winter: -60°C: Minimum -80°C
Altitude: 3233 m

Thickness ice layer: 3300 m .
Distance from sea: >1000 Km

_ B -y = . -
Extreme conditions w Wb Ry e

Atmospheric pressure: 645 hPa ———————

B Healey, ESA, IPEV, PNRA
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Grey water treatment unit (GWTU) @ Concordia

e Strategy based on membranes:
e Ultrafiltration (UF) — nanofiltration (NF)
e Reverse osmosis 1 (RO1) — Reverse osmosis 2 (RO2)
e System treating the grey water generated by 25 persons (2.5 m3 d-1)
e Grey water streams are mixed and microbial growth is inhibited by addition of oxonia.

Back-flush
Grey Water e e el e e e e e e e -i
Recycling of Permeate :
I
I
? |
I
© © (7} :
UF NF — ol 1 o Ol 2 O |
: ; -
5 " Ba , Bladamtons - Produced |
(1] e I : Recycling of Retentate I |
- - . Water I
\J i i { |
o _ e ; o . i
Black Water o I : I I
Treatment Unit I
Concentrate purge |
I
Use <— =
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Reverse Osmosis

Ultrafiltration + Nanofiltration

«On average: /5% water recovery
*ESA hygiene standard can be reached

23

June 13, 2016



Urine -> nitrification Grey water -> membranes
(UF/NF/RO)

MELISSA pilot plant Microbial water
treatment

| (== 1 et l P
-Core water
recycling system

Water Treatment Unit Breadboard (WTUB):
Urine — condensate — grey water

-> nitrification
-> membranes (UF/NF/RO)
+
-> crystallization

. - 24
-> electrodialysis



Urine - aerobic bioreactor: Objectives

1. Key nitrogen conversions in urine:
Hydrolysis: Urea = 2 NH, + CO,
Nitrification (+ O,): NH, - NO,” = NOj

e \olatile e Non volatile
e More toxic e Less toxic

* Low RO retention  High RO retention

2. Key organic carbon conversion (+ O,): oxidation to CO,

25



Non Edible Parts of Higher Plants

The MELISSA nitrification
compartment (C I11)

Fibre
degradation

Z

COMPARTMENT 1

Thermophilic Anaerobic
Bacteria

COMPARTMENT IV

IVB IvVa

Higher Plant Photoautotrophic |
Compartment Bacteria

Volatile
Food Fatty

Acids

Arthrospira platensi Minerals

COMPARTMENT I1

COMPARTMENT III NI
. : : =1
Nitrifying hotoheterotrophic Bacteria MELISSA
Bacteria Rhodospirillum rubrum et
Nitrosomonas/
Nitrobacter




Nitrification technology demonstration:
MELISSA pilot plant (MPP) — Barcelona (UAB)

Packed-bed reactor
Defined community: Nitrosomonas europaea — Nitrobacter winogradskyi
Demonstrated continuous interconnected operation (Godia et al., 2002):

Anaerobic fermentation (CI)
-> Nitrification (CIII)
-> Photobioreactor (ClVa)

A dynamic model for nitrifying biofilm reactors was developed and validated (Pérez et al.,
2005)




Urine nitrification:
Microbial water treatment

» Packed-bed reactor

o Undefined community

e Treating pretreated urine (30% dilution), for ca.
60% of an astronaut

« Complete conversion of urine nitrogen to nitrate
up to a volumetric loading rate of 1 g N/L/d L




Urine -> nitrification Grey water -> membranes
(UF/NF/RO)

MELISSA pilot plant Microbial water
treatment

| (== 1 et l P
-Core water
recycling system

Water Treatment Unit Breadboard (WTUB):
Urine — condensate — grey water

-> nitrification
-> membranes (UF/NF/RO)
+
-> crystallization
-> electrodialysis




WTUB design philosophy

Nitrification Electrodialysis
Crystallization Ultra Filtration Nano Filtration

s

il T
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@ cmet Water Treatment Unit Breadboard (WTUB) L

GWTU

Storage

R78%

20-40 L/d 15,05 L/d
RO1

=

T0341/d |
0,24 Lid

: ————{ 670 ]
Sized for 1 person rE80d]
UTU EDU
1,5Ld Bioreactor UF
-1,5 Lid

Urine —_—
0.3 L/d

| |

Waste storage
31



Water Treatment Unit Breadboard

Rack 1 Rack 2 Rack 3
CCU + UTU EDU GWTU

LT ]
£ Acid/Base /e

/| “Crystallyzer \ :
¥ g - ; {4 Storage
F

ED NF RO Hygienic

Retentate Concentrate Concentrate water
J

About 3 months continuous operation

Up to 90% water recovery feasible

RO filtrate complies with hygience water standards (except for nitrate: 13 > 11 mg N/L)
Stable urine (around 30% diluted) nitrification (effluent down to <0.5 mg N/L)
Crystallisation and electrodialysis are performant in mitigating scaling

A bioreactor is performant in mitigating fouling

32



Water Treatment Unit Breadboard (WTUB):

Urine — condensate — grey water

-> nitrification
-> membranes (UF/NF/RO)
+
-> crystallization
-> electrodialysis

h 4

Ground demonstration:
from undefined to defined communities

Space adaptation:

« Gas/liquid transfer: aeration for the bioreactor

« Space environment: effect of microgravity and
radiation on microbial activity and biofilm
formation

33



Urine nitrification: from undefined to defined communities
(Additional unit for increased water loop closure;
UNICUM: urine nitrification consortium)

e Pure strains 2 microbial collaborome
e Batch incubations = bioreactor

Independent

cultivation Activity test

Presence of a
chiara Neterotroph enhances
ligrande the nitrification rate

Good nitrification rates
Marlies  up to >45 mS/cm (less
Christiaens +han 50% diluted)




Nitrification: understanding effect of the Space environment

Space
Reactions in URINIS - ISS
Space (2016; UGent - SCK- Pure strains + defined
CEN - UMOHS) communities
Bistro - ISS
(2015; UGent - Pure strains + defined
Preservation under SCK-CEN) communities
Space conditions
(microgravity + 2x |
ISS radiation) Nitrimel - Photon M4 guge Saralns 1
. efined community +
(2014; UGent - SCK- 3 undefined
CEN) communities
N
N
MEL'SSA
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Water recycling: Key MELISSA achievements

« On a mass flow basis, H,O recycling has the highest priority to limit resupply in

Space
* There is no one-fits-all solution: Different water qualities/quantities...

o ...are required (hygiene/drinking/...)
o ...are available in wastestreams

* With all individual technologies available and schemes tested:

 modular solutions (building blocks) can be offered
* hygiene and/or drinking water can be recovered at high efficiency and

reliability
« demonstrated on the main water streams for human Space exploration
(condensate — grey water — urine)

* Whenever urine is included in a scheme, a hybrid approach including
biological, chemical and physical conversions is opted for
36
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Water recycling: Future challenges

 For a specific solution: optimize processes and overall scheme according to the ’10
commandments’, more specifically wrt: sizing, energy consumption and crew time

« Space adaptation, most relevant for nitrification: initial key steps ongoing

* In Space, water is entangled with organic carbon and nutrients (N/P):

* Water recovery goal: creating CO, and concentrated sidestreams (C/N/P)

» ‘Conventional’ MELISSA loop: element (C/N/P) recycling goal: N/P remain
embedded in water until taken up by plants

 Holistically closing the water and elements loop might require a hybrid solution

 Within the MELISSA loop: salts will accumulate in the water in the food production
compartment (higher plants) -> a treatment solution might be needed

 Adequate quality monitoring tools (fast/informative) are needed, within a solid risk
management system:

 Particularly for microbial contamination, but also for metals, pharmaceutical
residues, hormonal substances,...

* First steps have been set (BELISSIMA), and the development of a new development
roadmap

37
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