

From living cells to stable isotopes:

An interdisciplinary approach for unravelling microbial interactions in ammonia-overloaded anaerobic digesters

Francesc X. Prenafeta-Boldú (francesc.prenafeta@irta.cat)

L. Ruiz, J. Vila, B. Fernández, V. Riau, M. Guivernau, M. Viñas

GIRO Joint Research Unit IRTA-UPC, Torre Marimon, Caldes de Montbui, Spain.

Closing loops in 'Micro Ecological Life Support System Alternative'

Closing loops in circular economy

Nitrogen fate and toxicity in anaerobic digesters

L. Sun et al. / Journal of Biotechnology 171 (2014) 39-44

Table 1Operating data from digesters used for population analysis.

Main substrates	Digester	Temperature (°C)	TAN ^a (g/L)	$NH_3^b(g/L)$	pH	HRT ^c (days)	VFA ^d (g/L)	OLRe (g VS/L/day)	¹⁴ CO ₂ / ¹⁴ CH ₄ ^f
Sewage sludge	Α	38	0.9	0.03	7.4	17	0.65	2.4	0.05 ± 0.01
Sewage sludge	В	38	2.6	0.09	7.4	20	0.12	2.2	0.1 ± 0.01
Cow manure	C	38	0.9	0.07	7.8	130	0.05	0.1	0.3 ± 0.18
SSMSW ^g , food industrial wastes	D	36	3.9	0.18	7.6	25	4.0	3.0	1.2 ± 0.44
SSMSW, food industrial wastes	E	37	3.3	0.16	7.6	37	6.0	2.5	1.6 ± 0.86
Food industrial waste and grass silage	F	40	3.5	0.31	7.8	101	3.1	3.0	3.8 ± 0.92
Chicken manure, food industrial wastes	G	37	5.2	0.25	7.6	64	4.7	3.0	6.2 ± 1.90
SSMSW, grass silage	Н	38	2.7	0.17	7.7	20	4.0	3.5	11.0 ± 8.61
Slaughterhouse waste and food industrial wastes	I	37	4.6	0.52	8.0	56	4.4	3.0	18.0 ± 5.26
Stillage and wheat boss	J	38	4.9	0.31	7.7	45	13.0	3.2	34.0 ± 3.48
Slaughterhouse waste, sludge	K	49	2.0	0.24	7.7	26	1.9	2.0	2.5 ± 0.58
SSMSW, slaughterhouse waste	L	55	2.5	0.82	8.1	60	2.4	1.0	6.6 ± 0.43
Industrial food wastes, manure	M	53	3.2	0.57	7.8	24	3.8	4.0	6.8 ± 0.89

^a Total ammonium-nitrogen concentration.

Ammonium concentrations of 2-5 g NH_4^+-N L^{-1} cause significant inhibition of methanogenesis, depending on T° , and pH conditions (free ammonia is the toxic species)

(Angelidaki & Ahring 1994, Sung & Liu 2003)

41

¹⁴CO₂/¹⁴CH₄>1

b Free ammonia.

^c Hydraulic retention time.

d Volatile fatty acid.

e Organic loading rate (c-e Average values).

f 14C-labelling analysis (mean value of triplicate analysis).

g Source sorted municipal solid waste.

The syntrophic acetate oxydation

SAOB are homoacetogenic bacteria that can reverse the Wood-Ljungdahl pathway, oxidizing acetate to CO_2 and H_2 , which are further metabolized by hydrogenotrophic archaea (SAOA)

SAOB have relatively low growing rates (doubling times above 40 days)

SAOB are polyphyletic but mainly linked to the *Clostridia* class (phylum *Firmicutes*)

Knowledge on the biodiversity, ecophysiology, and biochemistry of SAOB is limited

SAOB are very important for a stable anaerobic digestion process under high ammonia concentrations

Case study: methanogenic biomass from an agricultural biogas plant

Location: Vilasana, Lleida (Spain)

Reactor type: CSTR

Volume: 1500 m³ (2x)

HRT: 65 days

TAN: $2 - 4 \text{ gTAN L}^{-1}$

Operation regime: Mesophilic

Treatment capacity: 11.000 m³ of pig slurry and 4.500 m³ of organic residues

Batch activity assays

Treatment conditions (x3)

Acetic Acid: 3.5 g Ac L⁻¹

(*Acetic acid: 13CH₃-COOH)

Inoculum: 12.5 gVSS L⁻¹

Ammonia: 1, 3 and 6 gTAN L⁻¹

Incubation: 65 days at 37°C

Monitored parameters

VFA/COD
CO₂/CH₄ GC-TCD and GC-IRMS
NGS MiSeq (Eub/Arch) DNA/cDNA
qPCR 16S rRNA and mcrA (DNA/cDNA)

Compound Stable Isotopic Analysis (CSIA) of biogas: Unlabelled experiments

Apparent fractionation factor (α_c) (Conrad 2005, Conrad et al. 2009)

$$\alpha_c = (\delta^{13}CO_2 + 1000)/(\delta^{13}CH_4 + 1000)$$

 $\alpha_c < 1.055$ Dominance of acetotrophic methanogenesis

 $\alpha_c > 1.065$ Dominance of hydrogenotrophic methanogenesis

 $\alpha_c > 1.080$ Exclusively hydrogenotrophic methanogenesis

1gN-TAN ·L⁻¹ $\alpha_c = 1.054 \pm 0.017$ Acetotrophic

3gN-TAN ·L⁻¹ $\alpha_c = 1.077 \pm 0.001$ Hydrogenotrophic

6gN-TAN ·L⁻¹ $\alpha_c = 1.080 \pm 0.001$ Hydrogenotrophic

Compound Stable Isotopic Analysis (CSIA) of biogas: labelled experiments

AM
$$^{13}CH_3$$
-COOH \longrightarrow $^{13}CH_4$ + CO₂

Microbial molecular characterization

Ammonia versus transcription level (RT-qPCR)

Molecular targets:

The hypervariable V3-V5 region from eubacterial 16S rRNA genes
The functional mcrA gene (methyl coenzyme-M reductase) specific of methanogenic archaea

NGS of eubacterial 16S rRNA libraries

Some of the identified ribotypes were somewhat homologous to the SAOB Clostridium ultunense and Tepidanaerobacter acetatoxydans

NGS of archaeal 16S rRNA libraries

Implementation in high-rate anaerobic digesters

Enrichment of SAO biofilm on different support materials (nylon, zeolite, magnetite, steal, graphite, etc.)

Process optimization in a continuous lab-scale anaerobic filter

Conclusions

- 1. A diversified approach (batch methanogenic activity tests, biogas isotopic fractionation, and molecular characterization of microbial communities) demonstrated the occurrence of SAO activity in a full-scale anaerobic digester.
- 2. Methanogenic activity switched from predominantly acetotrophic to hydrogenotrophic (linked to SAO activity) at 3 gN-TAN L⁻¹ and could be sustained up to 6 gN-TAN L⁻¹, but a slight inhibition could already be observed.
- 3. No significant microbial shift upon ammonia supplementation were apparent for the *Eubacteria*. Members of the phylum *Chloroflexi* were predominant, but the most active belonged to the *Firmicutes*.
- 4. About 5% 10% of identified OTUs were related to homoacetogenic bacteria. Some of them were homologous to the SAOB *Clostridium ultunense* and *Tepidanaerobacter acetatoxydans*.
- 5. Concerning the *Archaea*, representatives of the genera *Methanoculleus* and *Methanosarcina* appear to be fundamental hydrogenotrophic syntrophic partners (SAOA).
- 6. Current efforts are aimed at lab-scale process implementation and optimization in high-rate anaerobic digesters based on SAO biofilms.

Acknowledgements

Special thanks to: Javier Garcia, Laura Tey, Arantxa Matos, Josep Illa, Xavier Flotats

Funding:

Optimization of the anaerobic digestion and biogas production process of proteins and lipids rich wastes, with ammonia recovery (Ref. RTA2012-00098-00-00)

