

Effects of simulated space radiations on plant roots investigated by a proteomic analysis

Angiola Desiderio ENEA, Biotechnologies and Agroindustry Division Rome, Italy

Simulating space conditions

ENEA: A multidisciplinar research center

ENL

HORTSPACE "New plant 'ideotypes' for a space garden" (ASI-ENEA Agreement). Design and construction of a greenhouse for experimental cultivation in space conditions (HortExtreme, Mission AMADEE-18)

Radiation effects on living structures

DIRECT energy transfer on biological macromolecules (DNA, proteins, membranes, polysaccharides,...) **INDIRECT** energy transfer through other molecules (mainly water) forming very reactive radical species.

How to study the space stress effects on plant?

Identifying the capacity of the biological system to withstand stress.

Experimental conditions pushed to the survival limit (at short or long term)

biological system is able to acclimate to space stress

Experimental conditions close to those actually experienced during space missions

Lower dose radiations

Investigation level

Genomics: chromosome aberrations, mutations, unrepaired fragmentation, reproductive sterility, ...

Transcriptomics, Proteomics, Metabolomics: functional response

High dose radiations

Proteome role in stress response

GENOME

perpetuates life by maintaining the levels of active proteins

Are plants able to acclimate to space environment stress conditions?

Can we use plant to produce food during long term space missions?

PROTEOME

actively sustains life by:

- regulating metabolism,
- repairing genome,
- adapting growth and physiology,
 - detoxifying cells,
- eliminating damaged macromolecules,

A plant for the space: the ideotype

Bioengineering

Activation of anthocyanins synthesis through the expression of the transcription factor AN4 (c-Myb) of petunia.

- Micro Tom a dwarf tomato cultivar
- Small size (15-20 cm)
- Short life cycle (seed-seed 70-90 days)
- High photosynthetic efficiency under fluorescent light
- High productivity (20-30 fruits/plant; mean diameter of fruits 15 mm)
- Continuous flowering
- Easy to cultivate at high density (> 100 plant/m²)
- Better performances in hydroponics

[Scott & Harbaugh 1989. Florida Agr. Exit. Sta. Circ S-370]

Plant chosen system: Tomato 'hairy roots'

Solid platform for the production of valuable molecules, including metabolites and pharmaceutically relevant recombinant proteins

Antifungal antibodies

AKVTMTCSA

Antimicrobial peptides

Immunostimulatory molecules

Gamma radiation

ENEA National Institute of Ionizing Radiation Metrology (INMRI-ENEA) Dr. Maria Pimpinella

- Decay of Co-60
- Average energy released: 1250 KeV
- Dose rate: from 1.3 x 10⁻² to 3.9 x 10⁻³ mGy/min

- Exposure doses: 0.5 Gy, 5 Gy, 10 Gy
- Samples: 3 biological replicates for each experimental condition

Radiations in space

Effects of simulated space radiations on plant roots investigated by a proteomic analysis, May 2018

X radiation

CHF 320G X-ray generator ENEA - Physical Technologies for Security and Health Division Dr. Claudio Pioli

- Operating conditions: 250 kV, 15 mA
- Filters: 2.0 mm Al and 0.5 mm Cu
- Exposure doses: 0.5 Gy, 5 Gy, 10 Gy
- Samples: 3 biological replicates for each experimental condition

Differential proteomics approach

2D-DIGE Technology (GE Healthcare)

Dose related response of root proteome

Principal components analysis

Hierarchical clustering analysis

Multivariate statistical analysis showed that doses of **gamma** and **X radiation** up to **0.5 Gy** do not significantly influence plant proteome.

A functional response is evident at **5 Gy** and does not vary with increasing exposure up to **10 Gy**.

Predicted interactions among differential proteins

STRING analysis (functional protein association networks)

Proteins involved in stress response

ATP synthase, vacuolar		1
Enolase	1	
Heat shock protein 70, mitochondrial	1	
Insulinase	1	
Malate dehydrogenase, NAD-dependent	1	
Protein disulfide isomerase	1	
Fructokinase-2	1	
Glutamine synthetase	1	
Glutathione S- transferase		1
Heat shock protein 60, mitochondrial		1
UDP-glucose pyrophosphorylase	1	

ATP synthase, vacuolar		V
Enolase	1	
Heat shock protein 70		
Insulinase	1	
Malate dehydrogenase	1	
Protein disulfide isomerase		
Aconitase/3-isopropylmalate dehydrogenase	↑	
Aldehyde dehydrogenase		1
Ascorbate peroxidase 2, cytosolic		
Glutamate dehydrogenase		
Isocitrate dehydrogenase, cytosolic NADP-dependent		
NADH dehydrogenase, mitochondrial		4
Transketolase		

Proteins involved in oxidation-reduction processes

Malate dehydrogenase		
Insulinase		
Dihydrolipoyl dehydrogenases	1	
Formate dehydrogenase, mitochondrial		1
Glutathione S-transferase		1
Histone H4		
Peroxidase		$\mathbf{+}$

<image>

Malate dhydrogenase	1	
Insulinase	1	
Aldehyde dehydrogenase		V
Ascorbate peroxidase, cytosolic	1	
Dehydroquinate dehydratase	1	
Elicitor-activated gene 3-2	1	
Glutamate dehydrogenase	1	
Glutathione-disulfide reductase		1
Isocitrate dehydrogenase, cytosolic	1	
Monodehydroascorbate reductase		V
NADH dehydrogenase, mitochondrial		V
Transketolase	1	

Proteins involved in protein folding and refolding

Xra	ays	_		SAM-2	
	(in the second s	MHSC70		MEE32	OAS
		Ø,	AT4G0293	$\langle \rangle$	
	APX1	1.052	MDH	HI AT5G0868	
		At3g24	170	MAB1	ATIG51980
	EIF4AJ	ALDHI	DAB EMB1467		VAB2
			EU3-2		~

Chaperonin 60		Chaperonin 60	
Heat shock protein 60, mitocondrial	4	Heat shock protein 60, mitocondrial	
Heat shock protein 70		Heat shock protein 70	Τ
Protein disulfide isomerase		Protein disulfide isomerase	Τ

Proton beams

Pulsed linear accelerator TOP-IMPLART

ENEA - Physical Technologies for Safety and Health Division

Dr. Monia Vadrucci

- Beam power: 27 MeV at the accelerator output
- Dose rate: 0.2 Gy/s with 10⁹ protons/cm²
- Exposure doses: 0.5 Gy, 5 Gy, 10 Gy
- Samples: 3 biological replicates for each experimental condition

Experiments in progress ...

Effects of static magnetic fields

Active systems of magnetic shielding from cosmic radiation [*European Space Radiation Superconducting Shield* - CERN Project SR2S]

Residual magnetic field in the habitat: ~ 10⁻¹ T [P. Spillantini et al, 2010]

Biological effects ?

Static magnetic fields

Magnetic devices specially designed and assembled to mimic magnetically shielded space habitats

ENEA - Physical Technologies for Security and Health Division Dr. Vanni Lopresto

Samples: 4 biological replicates for each experimental condition

Roots response to static magnetic fields

Proteomic results

No statistically significant variation of proteome, after exposure at different SMF intensities (250 and 500 mT), for different periods (1 and 10 days)

EZ Rhizo software analysis

Morphometric results

No significant growth modifications at 250 and 500 mT, in terms of both total root lenght and number of lateral roots.

Final goal: Cultivating in space

Effects of simulated space radiations on plant roots investigated by a proteomic analysis, May 2018

ENEA Team

Head of Biotechnology Laboratory: Dr. Eugenio BENVENUTO

Researchers: Luca NARDI Silvia MASSA Maria Elena VILLANI Elisabetta BENNICI Ombretta PRESENTI Maria PIMPINELLA Vanessa DE COSTE Claudio PIOLI Vanni LOPRESTO Stefania BACCARO Alessia CEMMI Monia VADRUCCI

External collaborations

Prof. Francesca QUATTROCCHIO University of Amsterdam (NL)

> Dr. Andrea SCALONI Dr. Anna Maria SALZANO *CNR-ISPAAM Naple (IT)*

Prof. Flavia GUZZO University of Verona (IT)

From: II Tempo

biotecnologie@enea.it

Effects of simulated space radiations on plant roots investigated by a proteomic analysis, May 2018

Thank you biotecnologie@enea.it

