

PARAGEN 1.0: a synthetic bacteriocin gene collection for rapid *in vitro* antimicrobial peptide selection for the microbial control of industrial fermentation

Jason Bland, PhD.

R&D Project Manager Syngulon

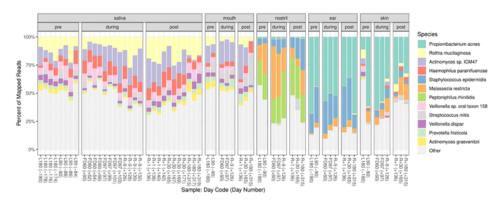
mjbland@syngulon.com

Presentation Structure

- 1. Importance of microbes for our ecosystem
- 2. Need of microbial control
- 3. Bacteriocins
- 4. PARAGEN
- 5. Bacteriocins in the age of synthetic biology

The importance of microbes for life on Earth

- Microbes are found in every environment on Earth (and beyond!)
- Ubiquitous microbial presence has beneficial and detrimental impacts for human health and the economy
- Microbes are collaborating and fighting with each other to reach certain equilibrium to form communities: "microbiota"
- These microbiota have evolved to generate unique chemical reactions <u>via species</u> synergies


Microbial Presence outside of Earth

Microbial analysis of the International Space Station

Most abundant species from crewmember samples, pre- and post-flight

Avila-Herrera et al. PLoS ONE (2020)

- Metagenomic analysis to sample bacterial diversity
- Bacterial composition in space is of great interest.

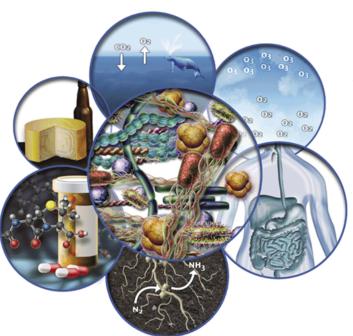
No PMA treatment

(total bacterial community)

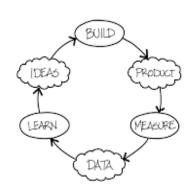
Top 11 family level taxa

Enterobacteriaceae
Methylobacteriaceae
Staphylococcaceae

Corynebacteriaceae
 Streptococcaceae
 o_Bacillales
 o_Clostridiales_Family_XI
 unidentified sequence

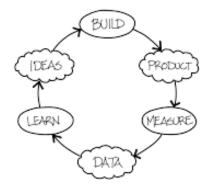

Moraxellaceae

c_Bacilli
Paenibacillaceae

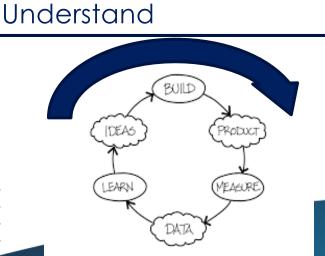

Application of microorganisms in industry

Microbial communities are the biocatalysts of our planet and industries

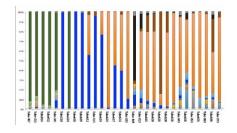
How can we control microbial communities?


Synthetic Biology approaches to Microbial Control

« Bio » Control



Intensification of microbial activity in industrial processes in the age of synthetic biology



« Omics sciences » allow to make the link between microbial physiology and the genetic code.

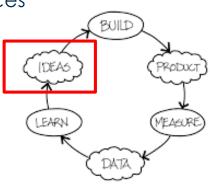
Proportion of bacterial species (%) in the different samples

Microbe identification based on genomic barre-codes (metagenomic)

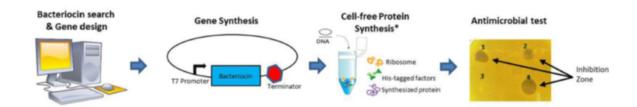
Basic research is very active

Technology Design for improving Microbial Biocontrol

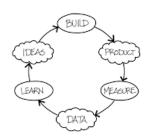
What genes can we use to control microbiota?

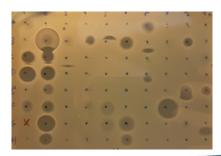

- (R) Explore the world of bacteriocins
 - Discovered in 1925 by Belgian scientist: "**André Gratia** (1893–1950): Forgotten Pioneer of Research into Antimicrobial Agents"
 - Heterogenous group of antimicrobial peptides produced ribosomally by bacteria
 - Used to **kill related species** to **reduce competition** for resources and space
 - Present species-specific toxicity

André Gratia



The PARAGEN 1.0 Collection




To explore the diversity of bacteriocins we have built <u>a collection</u> of synthetic genes in a standardized format allowing rapid activity measurements of bacteriocins.

Physical Collection of Bacteriocin Genes and Peptides

3 publications in the last year

BRIEF RESEARCH REPORT ARTICLE Front. Bioeng. Biotechnol., 06 September 2019 | https://doi.org/10.3389/fbioe.2019.00213

Philippe Gabant* and 🔝 Juan Borrero

Syngulon, Seraing, Belgium

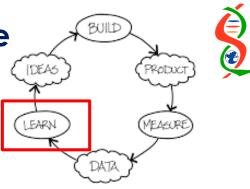
Home / Chimica Oggi-Chemistry Today / Vol. 38(4) / Antimicrobial peptides to... MICHAEL J. BLAND, PHILIPPE GABANT* *Corresponding author Syngulon, Seraing, Belgium ANTIMICROBIAL PEPTIDES TO SHAPE BIOBASED CHEMICAL PRODUCTION Keywords: anti-microbial peptides, antibiotics, bacteriocins, biotechnology, industrial fermentation,

~400 bacteriocin genes

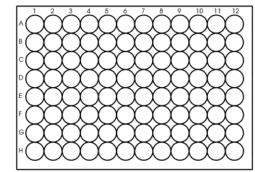
> 100 "wild type" bacteriocins chemically synthesized

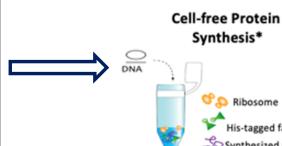
Open Access Perspective

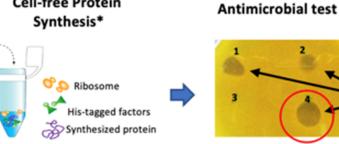
In the Age of Synthetic Biology, Will Antimicrobial Peptides be the Next Generation of Antibiotics?


by Pélix Jaumaux . Luz P. Gómez de Cadiñanos and Phillippe Gabant . Syngulon, Rue du Bols Saint-Jean 15/1, 4102 Seraing, Belglum . Author to whom correspondence should be addressed.

Antibiotics 2020, 9(8), 484; https://doi.org/10.3390/antibiotics9980484


Received: 14 July 2020 / Revised: 1 August 2020 / Accepted: 4 August 2020 / Published: 6 August 2020



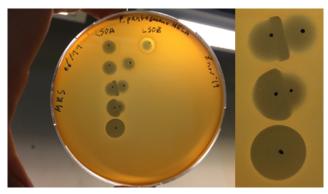

Mutant Library generation to determine structure/function relationships

Type of mutations

- Alanine scan
- Deletion
- Single or multiple amino acid mutation
- (Charge variation)
- (Disulfide bonds)

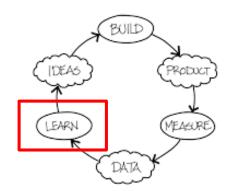
Prof Cédric Govaerts and Prof Abel Garcia-Pino

Professor Pascal Hols


Analysis of bacteriocin interactions

Experiments carried out at Imperial College London

Can observe bacteriocin interactions using plate spot assay


ScanLag Time-lapse 20 h of growth at 30°C

EntL50A

EntL50B

Prof. Ramesh Wigneshweraraj Imperial College London

Imperial College London

Analysis of bacteriocin interactions

EntL50A

L50A EntL50B

Diffusion of bacteriocins into the medium inhibits growth of bacteria

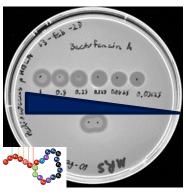
ScanLag Time-lapse 20 h of growth at 30°C

Experiments carried out at Imperial College London

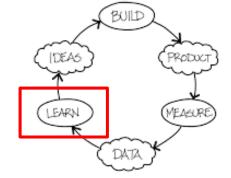
Prof. Ramesh Wigneshweraraj Imperial College London

7

Analysis of bacteriocin interactions

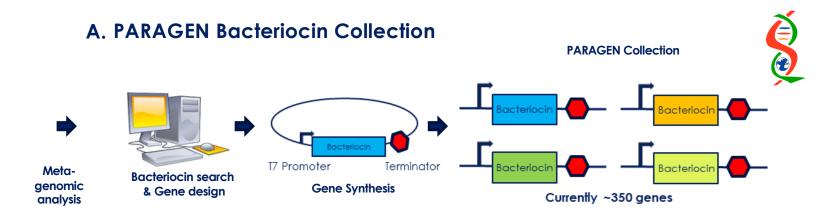


EntL50A

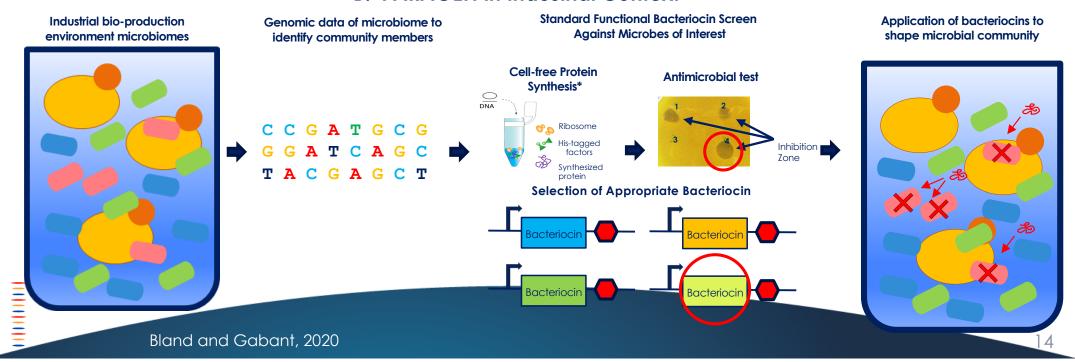

nLag Time-lapse

Experiments carried out at Imperial College London

ScanLag Time-lapse 20 h of growth at 30°C



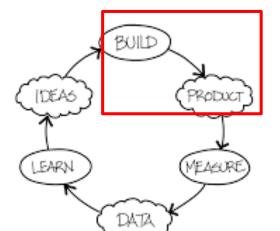
Prof. Ramesh Wigneshweraraj Imperial College London



Imperial College London

B. PARAGEN in Industrial Context

Where could biocontrol by bacteriocins be applied?



Clean tech

Biobased production

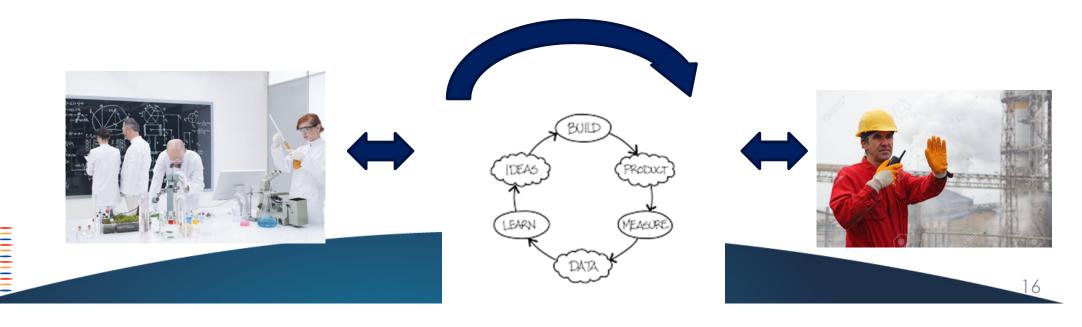
Cosmetics

Food E234 Nisin

Human health

Animal health/feed

Space



Take-home message

- 1. Search for new ways to control microbial flora (microbiota)
- 2. Synthetic biology allows reprogramming of biological functions
- 3. Bacteriocins are natural antimicrobial peptides (AMP) used by bacteria to protect their ecological niche
- 4. Syngulon has built PARAGEN, a unique collection of synthetic bacteriocin genes
- 5. Via academic collaborations Syngulon is studying the mode of action of bacteriocins
- 6. Via different industrial partnerships Syngulon is testing applications of bacteriocins

Team / SAB / R&D Partners

Team

Guy Hélin, Co-founder, CEO Dr. Philippe Gabant, Co-Founder, CSO

Dr. Mohamed El Bakkoury, CTO Yeast Dr. Jason Bland, R&D Project Manager Dr. Luz Perez, R&D Project Manager Félix Jaumaux. PhD Student Dr. Baptiste Dumont, R&D Project Manager Anaïs Pagès, R&D Scientist

Dr. Anandi Martin, Senior Project Manager - Infectious Disease

Hajar Amraoui, PhD Student Loïc Mues, R&D Scientist

Collaboration with: Universidad Complutense Madrid (UCM) Dr. Juan Borrero

Scientific Advisory Board

Pr Joseph Martial (Chairman), ULg, Liège (BE) Pr Bruno André, ULB, Brussels (BE) Adj-Pr Mike Chandler, University of Georgetown (USA)

Pr Pascal Hols, UCL, Louvain-la-Neuve (BE) Pr Didier Mazel, Institut Pasteur, Paris (FR) Pr Laurence Van Melderen, ULB, Charleroi (BE) Pr Ruddy Wattiez, UMons, Mons (BE)

Q & A

THANK YOU.

Dr. Jason Bland Syngulon mjbland@syngulon.com

www.melissafoundation.org

Follow us

PARTNERS

IN COOPERATION WITH

