

BIOFACADE

A key player in modern architecture

_ Identity

- \rightarrow 20y experience
- \rightarrow multidiciplinary team:

architects, bio-engineers, designers,

landscape designers, urban planners,...

 \rightarrow iconics buildings

ightarrow in France and abroad

 \rightarrow numerous prizes and distinctions

Nature-based/-inspired innovation for more sustainable and attractive cities

_ Methodologies :

ightarrow biomimetics, organic support, natural ventilation, urban metabolism,

urban ecology, urban agriculture, circular economy, cradle-to-cradle, short cycles,

LCA, carbon footprint, embodied energy, Material Flaw Analysis, ...

Our model

A symbiotic inspiration

XTU

A photosynthetic biofacade for a symbiotic building

_ Photosynthesis for greener cities

- \rightarrow sustainable building
- \rightarrow oxygen production
- \rightarrow carbon sink
- \rightarrow valuable process

Our concept

A critical pillar of our biosphere

_ « The original Earth chemical plant »:

- \rightarrow appeared 3.5 billion years ago
- ightarrow at the origin of the marine food chain
- \rightarrow transformation of the original Earth's atmosphere
- \rightarrow absorb 30% of atmospheric CO₂ and produce 50% of our
 - oxygen (Sce Tara Oceanic Mission)
- ightarrow at the origin of the marine food chain

Microalgae

A significant potential for multiple application

_ Microalgae main advantages:

- \rightarrow high molecular diversity: proteins, carbohydrates,
 - lipids, pigments, polyunsaturated fats (DHA, EPA, omega-
 - 3, omega-6,...), polysaccharides, all vitamins, ...
- → very high biomass productivity (5 to 10 times more than higher plant cultivated species)
- ightarrow 40 times less water consumption vs. Beef for 1kg of protein
- \rightarrow absorbs 5 to 10 times more CO₂ than a growing forest
- ightarrow ability to grow from waste and effluents

Microalgae

Culture system challenges

_ Microalgae need a precise control of the culture medium :

- \rightarrow sunshine (direct light, visible spectrum)
- ightarrow thermic regulation (+/- 5°)
- → pH (+/- 0,5)
- ightarrow protection against contaminants and predators
- → water agitation (maximise sun exposition and minimise biofilms)
- \rightarrow filtration / high precision centrifugation
- \rightarrow conditioning (ultra-fresh products)

PBR cultures economical challenges :

- \rightarrow high water consumption (95% of culture medium)
- \rightarrow very costly thermic regulation (70% of energetic costs)

 \rightarrow important energetic consumption, due especially to high pressure drop values for water circulation

(40% of cost price)

 \rightarrow very high CAPEX (PBR = 70% of OPEX - amortisation)

Improve microalgae culture system

- Those economical challenges can be translated into technical challenges (« vertical approach »)
- \rightarrow reduce the quantity of water / raise volumic productivity
 - \rightarrow enhance passive vs. active thermal regulation
- \rightarrow reduce closed/controlled culture systems costs through industrialisation
- They can also be addressed by systemic design and industrial ecology, associating microalgae and buildings metabolisms into a symbiosis (« horizontal approach »)
 - → valorise externalities of microalgae cultures for the city / buildings
 - \rightarrow valorise externalities of buildings operations for the microalgae cultures
 - ightarrow reduce costs through mutualism

Urban microalgae farming

Flat and intensified PBRs: the biological solar panel of the future

_ 300 times more volumetric productivity than raceways:

- ightarrow maximisation of the surface / volume ratio
- \rightarrow high microalgae concentration (up to 30kg/m3)
- ightarrow maximisation of solar collection

_ Very low water consumption:

 \rightarrow -90% vs. RW

_ Still high CAPEX:

- → photosynthesis reaction is exothermic (only 4% of solar energy is converted into biomass, the rest is heat) – need thermic regulation
- ightarrow high technicality is very costly

10

Latest generation PBRs

1st innovation by XTU

SymBIO₂

Building-integrated PBRs

_ Flat, vertical PBRs to be integrated in facades

- ightarrow rectangular, vertical (slab to slab) or horizontal
 - (on or in the slab nosing)
- \rightarrow several sizes (up to 3,60 m high and 1,55 m wide)
- → for several programs (offices, commerce, residential, industry, infrastructure)
- ightarrow air sheet between 2 and 5 cm wide
- → 3 transparent sheets of glass (or one opaque backcover)
- ightarrow hidden technical PBR head / bottom for fluid circuit

2nd innovation by XTU

SymBIO₂

A vertical greenhouse for urban microalgae farming in symbiosis with the building

_ An active and productive facade

ightarrow Double-skin (curtain-wall) on South-SE-SW facing facades

with no shadows

- ightarrow Curtain-wall integrated PBRs on 50% of the facade
- \rightarrow Assisted passive ventilation of the «vertical greenhouse»,

enabling real-time thermic regulation of the cultures and the building

→ Thermal and chemical exchanges with the building (pre-heat of building waters, CO₂ capture, rain water valorisation for cultures,...)

A technology developed by SymBIO₂ consortium

_ A collaborative research program:

- \rightarrow coordination: XTU
- ightarrow 5 years research-framework program with GEPEA
 - (France's national scientific research center)
- ightarrow research contract with Séché Environnement
- → implication of expertise from AlgoSource Technologies, OASIIS, VIRY (Fayat Group)
- → a collaborative research program, winner of a national funding scheme (1,8 M€ subsidies for a 4,9 M€ budget)

_ A patented technology

 \rightarrow 2 patents

A validated and optimized technology

demonstrato

Commercia

The first bio-active facade within the world settled in Paris

_ AlgoHouse building

- \rightarrow 300 m² of biofacade
- ightarrow 35 % energy saving for heating water of the building
- ightarrow 50 % energy saving for thermic regulation of the culture
- \rightarrow O₂ and Highly valuable biomass producer
- \rightarrow Build up in 2022
- ightarrow Biggest carbon sink in urban areas

_ Algofarming company

- ightarrow association of XTU architects OASIIS Algosource Technologies
- ightarrow production and commercialization of biomass

The only integrated solution aiming at both building and algoculture rentability

Economical model

THANK YOU.

Anouk LEGENDRE XTU architects xtu@x-tu.com

www.melissafoundation.org

Follow us

PARTNERS

