

SpaceBakery

Take a step into the Future

MISSION TO MARS SpaceBakery

CONSUMERS CARE ABOUT THE PLANET

CONSUMERS WORRY HOW WE WILL FEED THE GROWING POPULATION

MEASS A"The Mars research program aims to bring innovations that meet new consumer demands"

INVESTIGATING HOW TO PRODUCE BREAD ON MARS, REQUIRES US TO :

Limit water use

Minimize energy requirements

Produce crops independent of agricultural land

Develop well balanced, highly nutritional finished goods

- Recycle waste streams to produce fertilizers or other circular products
- Implement sensor technologies to monitor and steer processes remotely

Evaluate (energy) efficient baking technologies

At Puratos we are committed to the next generation and a reliable partner in innovation for our customers on EARTH AND BEYOND

There for we launched the SpaceBakery project : A Belgian consortium of universities, research institutions and start-up companies

SpaceBakery

Closed Ecological Plant Cultivation System and Bakery for extended stays on Planet Mars and their applications for Planet Earth

Reliable partners in innovatio

Closed and self-sustainable modular system which is independent from agricultural land and climate, with optimal use of resources

- 1. Hardware closed production system
- 2. Efficient crop production
- 3. Use and recycling of resources
- 4. Monitoring of microbial climate
- 5. Healthy and nutritional staple food

Preparing for next phase:

Closed and self-sustainable modular system which is independent from agricultural land and climate, with optimal use of resources

- 1. Hardware closed production system
- 2. Efficient crop production
- 3. Use and recycling of resources
- 4. Monitoring of microbial climate
- 5. Healthy and nutritional staple food

Preparing for next phase:

Closed and self-sustainable modular system which is independent from agricultural land and climate, with optimal use of resources

- 1. Hardware closed production system
- 2. Efficient crop production
- 3. Use and recycling of resources
- 4. Monitoring of microbial climate
- 5. Healthy and nutritional staple food

Preparing for next phase:

6. Pollination within closed system

Courtesy of Prof. dr. ir. Katy Steppe

Closed and self-sustainable modular system which is independent from agricultural land and climate, with optimal use of resources

- 1. Hardware closed production system
- 2. Efficient crop production
- 3. Use and recycling of resources
- 4. Monitoring of microbial climate
- 5. Healthy and nutritional staple food

Preparing for next phase:

6. Pollination within closed system

courtesy of dr. ir. Ali Md Muntasir

Closed and self-sustainable modular system which is independent from agricultural land and climate, with optimal use of resources

- 1. Hardware closed production system
- 2. Efficient crop production
- 3. Use and recycling of resources
- 4. Monitoring of microbial climate
- 5. Healthy and nutritional staple food

Preparing for next phase:

Closed and self-sustainable modular system which is independent from agricultural land and climate, with optimal use of resources

- 1. Hardware closed production system
- 2. Efficient crop production
- 3. Use and recycling of resources
- 4. Monitoring of microbial climate
- 5. Healthy and nutritional staple food

Preparing for next phase:

6. Pollination within closed system

sck cen

5. Healthy and nutritional staple food

Closed and self-sustainable modular system which is independent from agricultural land and climate, with optimal use of resources

- 1. Hardware closed production system
- 2. Efficient crop production
- 3. Use and recycling of resources
- 4. Monitoring of microbial climate
- 5. Healthy and nutritional staple food

Preparing for next phase:

Mission to Mars : SpaceBakery Because we are committed to you and to future generations!

The partners:

- Lucie Beckers, Filip Arnaut, Bram Pareyt (Puratos)
- Natalie Leys, Nele Horemans, Rob Van Houdt, Eline Saenen, Ali Muntasir (SCK.CEN)
- Maarten Vandecruys, Oscar Navarrete
 (Urban Crop Solutions)
- Ying Cao, Jens Verbeeck, Hagen Marien (Magics)
- Kathy Steppe, Jonas Coussement, Simon Lauwers
 - (Ghent University)
- Ann Cuypers, Dries Vandamme, Kris Kunnen (Hasselt University)
- Timothy Lefeber (Flanders'FOOD)

THANK YOU.

Lucie Beckers Puratos Ibeckers@puratos.com

www.melissafoundation.org

Follow us

PARTNERS

UNIL | Université de Lausanne