

Characterization of oxygen production from photo-bioreactor for ISS cabin technology demonstrator

Outline

- 1. O2 Regeneration for Long-Term Human Space Missions
- 2. Algal Photo-bioreactors
- 3. BIORAT1 Flight Demonstrator Objectives, Mission & Design Overview
- 4. Photobioreactor-Liquid Loop Breadboard Model Test
 - Background & objectives
 - Hardware configuration
 - Biological results
 - O2 light intensity production model correlation
 - O2/Biomass stoichiometric ratio
- 5. Conclusions & Way Forward

1 - O₂ Regeneration for Long-Term Space Missions

- Efficient regeneration of O₂ is key for long-term human missions > Bio-regenerative (or hybrid) systems key
- Current O₂ generation and CO₂ capture on ISS:
 - Electrolysis of H₂O
 - Scrubbing of CO₂ (CDRA) and reduction to CH₄
 (Sabatier)
- Algal photo-bioreactors, an efficient alternative (or complement) for O₂ regeneration
 - CO₂ capture and O₂ generation through photosynthesis
 - Generation of edible Biomass
 - Process controllable with short time constants

2 - Algal Photo-bioreactors

- State-of-the-art

- Ground-based demonstrators
 - MELISSA Pilot Plant
- Small-scale Flight Experiments
 - Artemiss (ISS BIOLAB)
 - First Photo-bioreactor on ISS
 - PBR@LSR
 - Flight on ISS in 2019
- Remaining challenges toward implementation in Life Support:
 - Production rate (continuous cultivation)
 - Optimal process control
 - Process efficiency: mass transfer,

heat transfer, culture density

Long-term reliability

BIORAT 1

Flight Demonstrator

3 - BIORAT 1 Flight Demonstrator- Mission Objectives

Objectives:

- Demonstrate recycling of CO₂ directly from
 ISS cabin into O₂ for crew
- Demonstrate optimal process control:
 - Precise regulation O₂ production on demand
 - Validation of model predictive strategy
- Generate edible biomass (work in axenic conditions, avoiding contamination)
- Demonstrate long term operation and controllability

Mission:

- Columbus Module (ISS), integrated in EDR2
- 3 months continuous operations with limited maintenance

3 - BIORAT 1 Flight Demonstrator - Mission Overview

L Upload

- BRT1: stowed conf
- Inactive system
- T-conditioning (algae: 5°C)

L-4d Ground Operations:

- BRT1-LSC preparation
- Sterilization StepsFilling and final assembly of

tightness)

- hardware

 Final checks (functional, leak
- Preparation of algae upload containers (5°C)

- Installation in EDR2
- System startup & diagnostics
- L+6d: inoculation of algae
- BRT1 PBR commissioning
- «stand-by» mode to maintain viability
- System check-up & monitoring

T0 (L+6d)

- BRT1-LSC activation
- Experiment execution and On-orbit Operations
- Experiment Monitoring
- Maintenance Ops. (T0+30d, T0+60d)
- Housekeeping Data Telemetry (ground)

T0+90d (TBD)

- End of On-orbit Experiment
- BRT1 On-orbit decommissioning
- Preparation to download
- Download

3 - BIORAT 1 Flight Demonstrator - Design Overview

4 - PBR-LL Breadboard Model (BBM) - Background

- 2017 Test campaign achievements [Chapuis2018]
 - Cultivation time 1 weeks
 - Biomass concentration up to 0.62g/L
 - Peak O2 production rate 8 mmol/hr
- Current (2019) Test Campaign objectives:
 - Cultivation time extension over 15 days
 - Biomass concentration extension up to 2g/L
 - Continuous O2 production rate 6.75 mmol/hr
 - O2, Biomass models verification

[Chapuis2018]: D. Chapuis, S. Nebuloni, P. Dainesi, S. Gass, C. Laroche, D. Duchez, C-G. Dussap, D. Demey, A. Delahaye, O. Gerbi, C. Paille. BIORAT 1: Oxygen Recycling between an Algae Photo-bioreactor and a Consumer. Presentation in Melissa Day 2018

4 - PBR-LL Breadboard Model (BBM)- Hardware configuration

 Spirulina strain: Limnospira indica PCC8005 (Formerly known as Arthrospira platensis)

BBM Key Functionalities

Continuous cultivation

PBR Photo-bioreactor PBR

Feeding

Harvesting

- O2 mass transfer
 - LL Liquid loop
 - Gas Exchange Membrane
 - O2 Measurement
 - · Gas conditioning

4 - PBR-LL Breadboard Model (BBM)- Biological results

Dry Biomass over time

	Objective	Achieved
Cultivation time	>15 days	27 days
Biomass concentration	2 g/L	2.3g/L

4 - PBR-LL Breadboard Model (BBM)- Biological results

- Spirulina length over time
 - Increase of spears lengths
 - Absences of cell particles
 - → PBR-LL Fluidic condition suitable

4 - PBR-LL Breadboard Model (BBM)

- O2 light intensity production model correlation

• O2 production rate model $\dot{n}_{O2,PBR}^a$: $\dot{n}_{O2,PBR}^a = \varepsilon_{PBR} \cdot \dot{n}_{O2,PBR} (I_0, \rho_x)$

Where ε_{PBR} correlation factor, $\dot{n}_{O2,PBR}$ is O2 production rate function from [Cornet2013], I0 is light intensity, ρ_x is the biomass density.

Light Intensity (W/m2)	Measured 'n ^a _{02,PBR} (mmol/hr)	Correl. ε _{PBR} · ἡ _{02,PBR} (mmol/hr)	Model Error (%)
20	3.7	4.69	26.7
35	6.3	6.61	4.90
50	8.8	7.98	-9.31

- Light step response (Range $I_0 = [20;50\text{W/m2}]$, Biomass $\rho_x = 1.17\text{g/L}$)
- Up to 8.8 mmol/hr produced
- Identified ε_{PBR} =0.953
- Maximum correlated error<1mmol/hr

Nominal cultivation intensity 40W/m2→~7.1mmol/hr ✓

4 - PBR-LL Breadboard Model (BBM) - O2/Biomass stoichiometric ratio

Stoichiometric relationship from [Cornet2017]:

$$CO_2 + 0,673 \text{ H}_2O + 0,192 \text{ HNO}_3 + 0,005 \text{ H}_2SO_4 + 0,006 \text{ P}_i \xrightarrow{\overline{J}_{XA}} \underbrace{CH_{1,566}O_{0,405}N_{0,192}S_{0,005}P_{0,006}}_{\text{Biomasse active}} + \bigcirc Q_p O_2$$

Where Q_P is the photosynthetic quotient (ratio of O2 mole produced per mole of biomass produced)

- O2 & Biomass Mass balance during initial batch cultivation
 - Measured Q_P: 1.2±0.1 (literature measured values typical range [1.29;1.40])

[Cornet2017] Cornet, J-F., "Procédés Limités par le Transfert de Rayonnement en Milieu Hétérogène," Université Blaise Pascal - Clermont-Ferrand II, 2007, pp.295-296

5 - Conclusions & Way Forward

Main Conclusions

- Month long system operation
- Algae compatible with PBR-LL hardware & cultivation condition
- Continuous O2 target production met
- Biomass concentration target met
- Correlation of O2 production rate model
- Measurement of produced Biomass and O2 production rate

Way Forward

- Upgrade from PBR-LL to Flight Demonstrator BBM
 - Process control (autonomous)
 - Addition of Solid Loop Sub-system
 - 90 days life test experiment to be performed

THANK YOU.

Dominique Chapuis RUAG Slip Rings SA

Dominique.chapuis@ruag.com

www.melissafoundation.org

Follow us

PARTNERS

IN COOPERATION WITH

