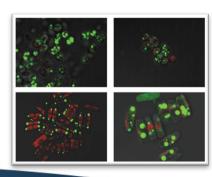


The effect of phosphate starvation on nutrient uptake and cellular content of the microalgae Desmodesmus communis and Chlorella protothecoides

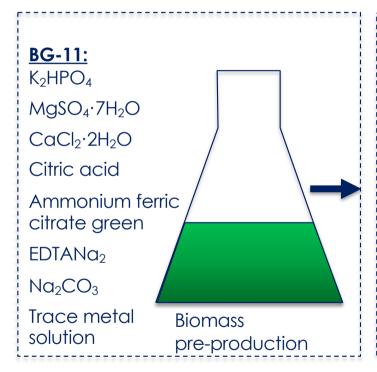


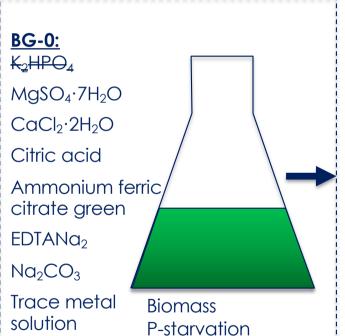
Background

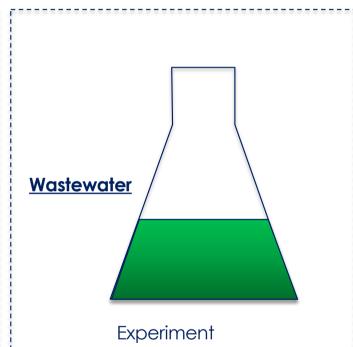
- No phosphorus reduction limits for small (PE<2000) MWWTP;
- Algae biomass as nature-friendly alternative for post-treatment;
- Luxury P uptake cellular phosphorus storage;
- Phosphorus starvation enhanced cellular P uptake;
- Nutrient stress (e.g. P deficiency) higher lipid, protein & carbohydrate production.

Experimental setup

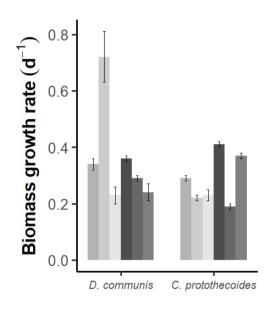
WWTP in Roja, LATVIA (<3000 PE)					
Receiving sewage (Primary WW)		Treated effluent (Secondary WW)			
D. communis		C. protothecoides			
Phosphate starvation period					
0 days	7 days		14 days		
pH, Temp., algal biomass (g DW L ⁻¹), DIN & DIP (mg N & P L ⁻¹), Poly-P (µg mg-1)					
10 days, room temp. (~24 °C), ~100 μmol m ⁻² s ⁻¹ , n = 3					

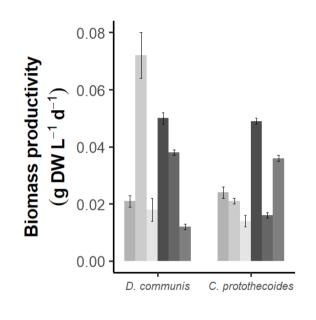

Wastewater characteristics

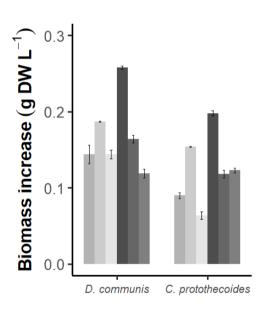

Parameter		Primary WW	Secondary WW
Total nitrogen	mg N L ⁻¹	110	40
NH ₄	mg N L ⁻¹	68	0.5
NO ₂₊₃	mg N L ⁻¹	21	32
Total phosphorus	mg P L ⁻¹	36	36
PO ₄	mg P L ⁻¹	30	30
рН		8.3	8.2
EC	μS/cm	1700	1600
BOD	mg O2 L ⁻¹	530	5.3
COD	mg L ⁻¹	970	42
N:P ratio		3:1	1:1


Sewage from fish processing factory

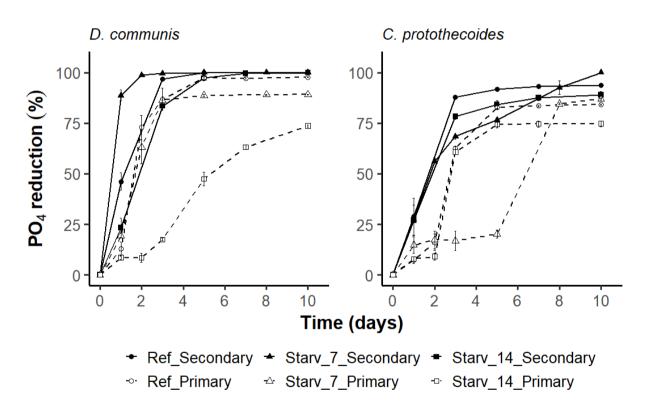
Biomass starvation







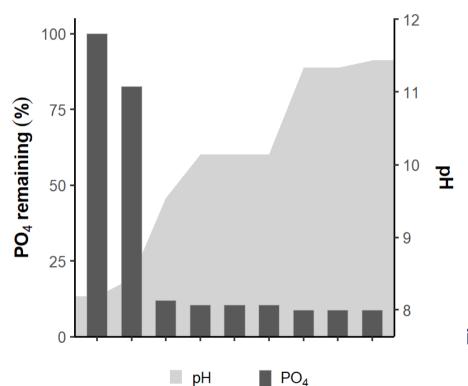
Results - BIOMASS




```
■ Ref_Secondary■ Starv_7_Secondary■ Starv_14_Secondary■ Ref_Primary■ Starv_14_Primary■ Starv_14_Primary
```

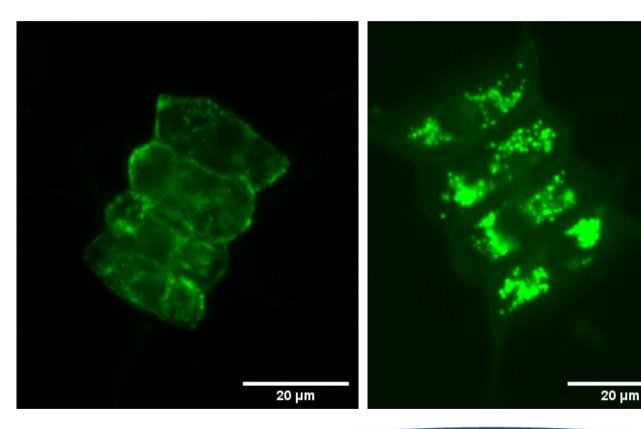

Results - NUTRIENTS

Phosphate reduction rate (%) under different treatments.

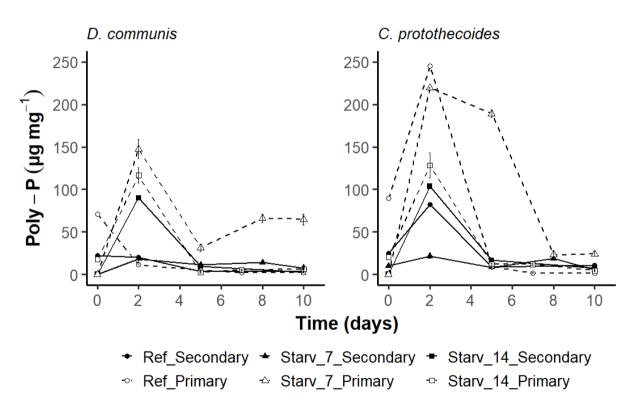

Ref_Secondary – reference conditions with secondary wastewater;
Starv_7_ Secondary – algal biomass starvation for

7 day period with secondary wastewater; Starv_14_ Secondary – algal biomass starvation for 14 day period with secondary wastewater; Ref_Primary – reference conditions with primary wastewater;

Starv_7_Primary – algal biomass starvation for 7 day period with primary wastewater; Starv_14_Primary – algal biomass starvation for 14 day period with primary wastewater.


NUTRIENTS (PO₄) - Role of pH

Relation of the phosphate content to pH changes in the control batch.


Results - POLYPHOSPHATES

Desmodesmus communis cell without polyphosphate granules (left) and with Poly-P granules stored in the cell (right).

Results - POLYPHOSPHATES

Polyphosphate (Poly-P) accumulation in algal biomass under different treatments.

Ref_Secondary – reference conditions with secondary wastewater;

Starv_7_ Secondary – algal biomass starvation for 7 day period with secondary wastewater; Starv_14_ Secondary – algal biomass starvation for 14 day period with secondary wastewater; Ref_Primary – reference conditions with primary wastewater;

Starv_7_ Primary – algal biomass starvation for 7 day period with primary wastewater; Starv_14_ Primary – algal biomass starvation for 14 day period with primary wastewater.

Conclusions

- Control of pH addition of CO2;
- Control of N/P ratio;
- Realistic & economically feasible starvation period;
- Sequenced batch mode.

Further reading

Lavrinovics, A., Mezule, L., Juhna, T., 2020. Microalgae starvation for enhanced phosphorus uptake from municipal wastewater. *Algal research*, 52, Dec. 2020.

Acknowledgment

Grant by Latvian Council of Science:

Municipal wastewater treatment using sequenced-batch photobioreactor technology LZP-2019/1-0271

THANK YOU.

Aigars Lavrinovičs

Riga Technical University

aigars.lavrinovics@rtu.lv

www.melissafoundation.org

Follow us

PARTNERS

IN COOPERATION WITH

