

An experimental device for studies on cyanobacteria at low pressure, in the frame of BLSS

Parameter	Earth	Mars
Total pressure	1013 hPa (sea level)	6–11 hPa
N ₂	78%	2.8%
O ₂	21%	0.1%
CO ₂	0.04%	95%
Ar	1%	2.1%

Atmosphere close to Mars-ambient: low constraints on materials and imported consumables

Too close to Mars-ambient: unsuitable for cyanobacterial growth (low P and pN₂)

→ Compromise to be found between engineering and biology

Atmos: a low-pressure PBR

- Accurate control of atmospheric conditions at low pressure.
- Some specifications:
 - 9 vessels, ca. 1L each.
 - Gas composition: can differ between rows.
 - Pressure, gas renewal: each vessel regulated individually.
 - Sampling at low pressure without interruption.
 - Also: adjustable stirring speed, light intensity, heating...
 - Computer-controlled.

Artwork by Joris Wegner, in Verseux et al. (submitted, 2020).

MDA-1 Mars-derived atmosphere 1

Atmosphere	Pressure (hPa)	CO ₂	N ₂	Ar	O ₂
MDA-1	100	4%	96%	0%	0%
Mars	6–11	95%	2.8%	2.1%	0.1%
Earth	1013 (sea level)	0.04%	78%	1%	21%

MDA-1 Mars-derived atmosphere 1

Atmosphere	Pressure (hPa)	CO ₂	N ₂	Ar	O ₂
MDA-1	100	4%	96%	0%	0%
Mars	6–11	95%	2.8%	2.1%	0.1%
Earth	1013 (sea level)	0.04%	78%	1%	21%

Gases from the Martian atmosphere

- non-limiting CO₂ (4 hPa)
- limiting, but exploitable, pN₂ (compromise: low total P)

\rightarrow In situ resource utilization

Low total P (100 mbar) \rightarrow Lower engineering constraints.

Vigorous growth of Anabaena sp. under MDA-1

Growth under MDA-1 induced physiological changes

A MDA-1 cyanobacterium extracts: remain suitable as a substrate for heterotrophs

Dry biomass: ground, resuspended at 25 g/L, filtered.

Filtrate used as a substrate to grow *E. coli* W.

(Previous results, under AA: growth of various heterotrophs (several strains of *E. coli* and *B. subtilis*) and aquatic plants (*Lemna* sp.))

Previous results, under AA: efficient growth of various cyanobacterium strains in various regolith simulants.

In Atmos, with different setup: dish stack.

In short

- Cyanobacteria: suggested as a basis for ISRU-based BLSS.
- Atmospheric conditions influence feasibility and cost-effectiveness.
- We developed a low-pressure photobioreactor: Atmos. Collaborations welcome.
- First results: an N_2/CO_2 (96/4) atmosphere at 100 hPa is suitable for diazotrophic cyanobacterium growth in BLSS:
 - Vigorous growth of Anabaena sp.
 - Regolith-based growth not impaired.
 - Secondary producers seem not negatively affected.

MICRO-ECOLOGICAL LIFE SUPPORT SYSTEM ALTERNATIVE

CENTER OF APPLIED SPACE TECHNOLOGY AND MICROGRAVITY

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Artwork by Sean McMahon, in: Verseux et al., Int. J. Astrobiol. 15, 65–92 (2016)

THANK YOU.

Cyprien Verseux ZARM, U. of Bremen cyprien.verseux@zarm.uni-bremen.de

We are also grateful to: - Prof. M. Avila (ZARM director) - R. Mairose, M. Stadtlander, P. Prengel and K. Krömer (ZARM engineers)