

Continuous operation of C3, C4a and C5 Compartments in the MELiSSA Pilot Plant interconnected in gas and liquid phases

INTEGRATION WP6: C3 + C4a connection in liquid phase and C3 + C4a + C5 in gas phase

Objective: integration of the liquid and gas phase of nitrifying packed-bed bioreactor (C3), airlift photobioreactor (C4a) and rats isolator as a mock crew (C5)

WP6: WP6 Context Diagram

Entering into the system:

□ Solid phase: Food, bedding, rats, C3 and C4a inocula.

esa

Liquid phase: Drinking water and medium components (C3 and C4a nutrients).

UNIVERSITY OF A CONTRACT OF A

Gas phase: Air interaction (Air entering for leak compensation to the system).

Exiting the System:

- Solid phase: C3&C4a biomass, rats faeces, bedding and food residues.
- Liquid phase: Urine, medium, condensates.
- Gas phase: Gas leaked from the system.

WP6: Main requirements

- □ The system shall address the dynamic **oxygen demand for 3 rats** while addressing the oxygen demand of C3 and achieving highest gas loop closure.
- □ The system shall **prevent chemical/microbial contamination** in the liquid/gas phase which could be toxic for C3, C4a process and the crew.
- □ The system shall **not leak more than 20%** of the initial gas volume in 4 weeks.
- Gain knowledge on **closure regenerative life support system**: C3, C4a, C5.
- Demonstration/validation of control **model robustness**.
- □ Validate long term continuous operation of processes, technology items.

WP6 Scope

- □ C4a should produce the **oxygen needed in** C5 and C3 compartments (rats+nitrification), with different demand dynamics:
 - > O2 demand in C5 depending on **day/ night cycles** of the rats
 - Several O2 concentration set-points in C5 will be tested (19-21%)
 - > O2 demand in C3 depending on N load (range 710-1500 ppm/day to be tested)
- □ C3 should produce the **nitrate needed in C4a** to produce oxygen for C3 and C5 (3 rats)
 - > Min. load approx. of **710 mg N/L·d** ($Y_{N/O} = 0.06$ g N/g O₂ in C4a, experimental data from MPP)
- □ Prepare **future integration steps** in the MPP:
 - Test N loads corresponding to the **potential urine introduction** into C3 compartment (higher oxygen demand in C3 and potential C limitation in C4a (C input required)
 - > Consider potential inputs/outputs to future connection of the higher plants chamber gas loop.

WP6 integration; C3&C4a connection by liquid phase and C3&C4a&C5 by gas phase

Oxygen demand in C3 and C5 (previous tests):

NO₃

NH₄

WP3 C3 cc Oxyg	results C5 comp. oxygen needs (g O ₂ /h) (average)		WP3 C4 C4 Oxyge (high I	test results ompartment on production ight intensity)		
N- Load (mg N/L d)	L O ₂ /d	g O ₂ /h	1 rat	3 rats	Inlet flow (L/d)	Oxygen production (g O ₂ /h)
438	10.2	0.56	0 50	1 77	20	2.44
876	20.9	1.14	0.59	1.77	30	2.76
Average	22	det eret			2104	

esa

Average O2 needs: around 2,8 g/n (C3+C4a)

WP1 test

B

S S

CO₂

C4a Characterization (New illumination system)

Max. Oxygen demand in C3 and C5 (WP6):

	O2 Max. needs for Integration WP6 Test						
N-NH₄+ Load (ppm/d)	C3 O ₂ needs (g/h)	C3 O ₂ needs Max C5 O ₂ needs (g/h) (g/rat/h)		Total O₂ WP6 req (g/h)			
710	0.91	0.73	2.19	3.10			

Condition	QL (L/d)	W/m2	CDW (g/l)	O2 prod (g/h)		C4a production 3.30-4
1	20	364	2.25	3.26		gO2/h
2	30	364	1.74	3.80		All conditions can be
3	40	364	1.27	3.94		tested in WP6 mode 1
4b	50	250	0.96	3.53		
4c	50	300	0.98	3.61	\checkmark	

esa

B

ma de Barcelona

Universitat Auto

WP6 Oxygen needs for C3 Compartment

CORA UAB Universitat Autònoma de Barcelona

CO2 CONCENTRATION IN THE LIQUID PHASE

WP6: PFD FOR NOMINAL OPERATION MODE 1

LOW AMMONIUM LOAD in the system

- □ C4a outlet is sent to C5 compartment.
- □ C5 outlet is divided to C4a and C3 compartments.
- □ C3 outlet is sent to C5 compartment.
- C3 closed gas loop is maintained (pulses addition when required).

WP6: PFD FOR NOMINAL OPERATION MODE 2

HIGH AMMONIUM LOAD in the system

- Part of C5 outlet is sent to C4a compartment
- Part of C5 outlet is sent to an oxygen enrichment membrane module to fulfil C3 oxygen requirements.

Oxygen enrichment unit (OEU) design

Evaluated technologies for Oxygen concentration:

- Cryogenic air separation units (ASUs)
- Pressure swing adsorption (PSA)
- Membranes separators (

Critical points in the OEU design:

> High operating pressure (6-8 bar) compatible with very low P in C5

Case

(2 mbar)

- > Regulation of **retentate Flow, temperature and Pressure**
- Avoiding presence of condensates and NH₃ cooler+automatic

drainage; coalescing filter; C filter in C5

> Dedicated **O**₂ **analyser** at the permeate side

PA1010-P3 membrane (AIR PRODUCTS)

esa

Oxygen Enrichment Unit (OEU) design and installation

CORA UNA BURNA de Barcelona

WP6 MODE 1 CONDITIONS

C3 compartment					WP6 OXYGEN NEEDS		
Inlet ammonium Ioad in C3 (mg N-NH4/L/ d)	N elimination in C3 (%)	O ₂ consumption. (gO ₂ /h)	DO set- point	Inlet gas concentration (%)	Max. O ₂ consumption per rat (C5; night period)	Total O ₂ consumption (C3+C5) <u>3 rats</u>	
			50	21.29			
710	99%	0.90	45	19.18	0.73	3.10	
			30	17.10			

- □ INLET FLOW FIXED at 20-30-40-50 L/day (3 HRT at steady state)
- □ AMMONIUM LOAD fixed at 710 mg N/L/d
- □ OXYGEN SET-POINT in C3 CONTROLLED at 45%
- □ SEQUENTIAL CHANGES of OXYGEN SET-POINT in C5 (21-19-20-21%)
- □ NUMBER OF RATS 3.

C3 and C4a start-up, stand-alone and liquid connection phases)

> C4a Initial batch phase with target OD of **2.5**

- Liquid Connection to C3 at 20 L/d
- Stable O2 production level
- Nitrate conc. kept above 30-50 ppm (no N limitation)
- TIC kept above 200 ppm (no C limitation)

eesa

B

Universitat Autònoma de Barcelona

C4a Nitrogen and Carbon content

CC CSA URB Universitat Autònoma de Barcelona

Production calculations

M ELLES S A

esa

UAB Universitat Autònoma de Barcelona

Theorical need (710 N-ppm/d)

Mode 1 – next phases schedule

System tightness

Group	Injected air (L)	Air flow (L/h)	Residual leak (Pa/h)	Total leak (Pa/h)
1	362	0.34	-0.7	-22.3
2	181	0.22	+3.5	-11.3

Leak specification: <30 Pa/h

WP6 MODE 2 CONDITIONS

Oxygen Enrichemnt Unit (OEU): O₂ enrichment available 40-50%

C3 compartment				OXYGEN CONSUMERS			
Inlet flow (L/d)	Inlet ammonium Ioad in C3 (mg N-NH ₄ /L d)	O_2 consump. (g O_2 /h)	DO set- point	Inlet gas concentration (%)	Max .O ₂ consumption per rat (C5; <i>night period</i>)	Total O ₂ consumption (C3+C5)	Total O ₂ consumption (C3+C5) considering 3 rats
	900	1.2	80	29.57		1.93	3.35
40	1200	1.6	80	34.14	0.73	2.33	3.74
	1500	1.9	80	37.2		2.63	4.12
 OXYGEN SET-POINT IN C3 CONTROLLED at 80% SEQUENTIAL CHANGES of OXYGEN SET-POINT in C5 (21-19-20-21 %) NUMBER OF RATS 3. 							Preparing HPC future integration: potentially pure O ₂ injection

Conclusions

Integration WP6 (in progress) main conclusions

- WP6 hardware design and validation completed
- Test conditions defined
- Testing phase (Mode1) progressing successfully, achieving continuous operation during 3,5 months of three compartments in gas and liquid phases, demonstrating the robustness of the system
- Mode 2 conditions defined; still to be modulated based on knowledge gained during Mode1
- Paving the integration of relevant future integration steps: introduction of urine and connection with next compartments (HPC) in the MELiSSA loop

THANK YOU.

Enrique Peiro *MELiSSA Pilot Plant – Claude Chipaux Laboratory Enrique.peiro@uab.cat*

www.melissafoundation.org

Follow us

PARTNERS

