

Seed orientation affects seedling development in hardware for experiments in space

Aronne G.¹, Izzo L.G.¹, Schiefloe M.², Dussap C.G.³

¹ Dept. Agricultural Sciences, University of Naples Federico II, Italy
² Centre for Interdisciplinary Research in Space CIRiS, Norway
³ Institut Pascal, Université Clermont Auvergne, France

Seed traits in a scenario of space biology experiments

Seed represents the smallest individual plant (embryo), is surrounded by nutritional tissue, lives in a quiescent state

From dry seed to seedling with first true leaves

A A

M ELESS A

WAPS (Water Across the Plant Systems) experiment

WAPS is funded by ESA to be performed on ISS, in the BIOLAB

WAPS (Water Across the Plant Systems) experiment

SSA

WAPS Root Compartment: seedling development up to the target stage

WAPS is funded by ESA to be performed on ISS, in the BIOLAB

WAPS: Seedling-hardware interactions

WAPS: Seedling-hardware interactions

Seed embryo: morphology and classification

Seedling morphology and classification

(de Vogel, 1980)

Seed orientation and seedling growth: research question

E

Does seed orientation affect seedling growth and development?

Vigna radiata seed length: about 5 mm Seed orientation and seedling growth: experiment set-up

Dry seeds: **Vigna radiata** Temperature: 22° C RH: ~100% Light: ~100 µmol ·m⁻² ·s⁻¹

g

Seed orientation and seedling growth: sample analyses

Digital Images: at 24, 44, 46, 48, 68h from sowing.

Digital Image Analysis: ImageJ (Raspand, USA)

ISSA

Measured parameters:

- time of radicle protrusion
- root length
- root growth rate
- root angles

Seed orientation and seedling growth: results

Root elongation and root angles of seeds at different orientations

A = green line, B = red line, C = dark blue line, D = purple line, E = light blue line

Data usage: empirical approach

Results of the - Seed orientation tests together with those from the

- Substrate tests
- Seed cover tests
- Gum guar tests
- New lid tests
- Hydration tests

gradually increased percent success of seedling development up to 100% of the germinated seeds

Data usage: theoretical approach

(6-6-)겷-xy =

currently evaluated for developing predictive morphological processes related to early seedling growth.

Present studies show that the L-systems rules of vegetal development must tackle with physical and physicochemical phenomena and mass balances constraints.

THANK YOU.

Giovanna Aronne

University of Naples Federico II aronne@unina.it

www.melissafoundation.org

Follow us

PARTNERS

UNIL | Université de Lausanne