KAMIL JANIAK

K, MG, CA, NA BALANCES IN A CLOSED SYSTEM COMBINING AEROPONIC LETTUCE CULTIVATION SUPPLIED WITH GREY WATER

MELISSA CONFERENCE 2020

Table of contents

1. Aeroponics and hydroponics

2. Grey water based aeroponics

Reason behind project Experiment description and general results Biodegradation of surfactants Mass balances – nitrogen as an example Mass balance – possible recovery rates Transport costs

Aeroponics and hydroponics

Reason behind experiment

Experiment description and general results

Biodegradation of surfactants

Mass balance – nitrogen as an example

Mass balance – possible recovery rates

Recovery rate	Module 7, Reference (clean water)			
Ν	78.2%			
Р	49.4%			
К	69.1%			
Mg	22.5%			
Ca	9.5%			
Na	56.5%			
Water	39.6%			
С	30.1%			

Transport costs

Module	Percent efficiency in comparison to clean water cultivation	Required area	Mass	Transport cost to Mars
		m ²	kg	min dollars
Module 1 (SLES, 1.70 g⋅L⁻¹)	18.6%	1.84	187	112
Module 2 (SLES, 0.07 g·L ⁻¹)	76.7%	0.45	45	27
Module 4 (SMCT, 0.08 g·L ⁻¹)	77.2%	0.45	45	27
Module 6 (SBDS, 0.08 g·L ⁻¹)	95.6%	0.36	36	22
Module 7, Reference (clean water)	100.0%	0.34	35	21

lettuce yield is 131 g of fresh mass $\cdot d^{\text{-1}} \cdot m^{\text{-2}}$

lettuce dietary requirement is 7.5 g of fresh mass·d⁻¹·crewmember⁻¹.

The number of crewmembers is assumed to be 6.

The mass of 1 m² of cultivation is assumed to be 101.5 kg

The cost of transporting 1 kg to Mars is estimated to be 600 000 dollars

Full results are available in "Surfactants effect on aeroponics and important mass balances of regenerative life support system – Lettuce case study" Science of the Total Environment 718 (2020) 137324