Light quality alters the response to ionizing radiation in seedlings of legume species in terms of development and nutritional traits

V. De Micco, P. Vitaglione, G. Aronne
MG. Pugliese
C. Arena

Dept. Agricultural Sciences
Dept. Physics
Dept. Biology

veronica.demicco@unina.it - University of Naples Federico II
Plants vs Mammals

Radiation hormesis
- P: pronounced and confirmed in numerous studies
- M: further validation is needed

DNA repair mechanisms
- BER, HR, NHEJ are conserved among P and M

Overall radiosensitivity
- P: radioresistant, e.g., high dose > 10 Gy
- M: radiosensitive, e.g., high dose > 0.1 Gy

High-LET vs low-LET ionizing radiation
- Both P and M are more sensitive to high-LET IR

Features conferring radioresistance
- P: cell wall, polyploidy, phenolic compounds
- M: not identified for the moment

References

Variability of responses

<table>
<thead>
<tr>
<th>Type</th>
<th>Dose</th>
<th>End-point</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>high</td>
<td>ROS production, damage to proteins and nucleic acids, reduced growth and early senescence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>Decreased development and altered metabolism</td>
<td></td>
</tr>
<tr>
<td></td>
<td>low</td>
<td>Occurrence of hormesis: increased content of antioxidant compounds, improved nutritional value, stimulation of growth</td>
<td></td>
</tr>
</tbody>
</table>
Effects of radiation on plants

Tools
- Space opportunities
- Low-LET radiation
- High-LET radiation

Approaches
- Molecular
- Structural
- Physiological
- Nutritional

Some major alterations

- **Molecular alterations**: gene expression, chromosome aberration
- **Morphological alterations**: organelle structure, cell cycle regulation, cell wall, plastids, tissue organization
- **Physiological processes**: photosynthesis, ROS production, reproduction, production of antioxidant compounds
Experiments with radiation

To test if the effects of radiation depend on phenological and developmental phase

To assess a possible stimulatory effect at low doses

To explore the dose range where plant sensitivity is expected

Main issues:

Species
- Dwarf bean
- Azuki bean
- Soybean
- Tomato

Radiation type
- X-rays
- C-ions
- Ti-ions
- Ca-ions
Effect of heavy ions on development, photosynthesis and fruit antioxidant production in Microtom plants: a Space Perspective

Arena C.1*, Vitale E.1, Hay Mele B.2, Cataletto P.R.1 Turano M.1, Simoniello P.3, De Micco V.2

1Department of Biology, University of Naples Federico II, Italy; 2Department of Agricultural and Food Sciences, University of Naples Federico II, Italy; Department of Science and Technology, University of Naples Federico II, Italy

*carmen.arena@unina.it
Anatomy, photochemical activity, and DNA polymorphism in leaves of dwarf tomato irradiated with X-rays

C. ARENA¹,²*, M. TURANO¹, B. HAY MELE³, P.R. CATALETTO¹, M. FURIA¹, M. PUGLIESE⁴, and V. DE MICCO³

DOI: 10.1007/s10535-016-0668-5
Novel points

Target organ/tissue

• Most experiments have been done by irradiating dry seeds

Interaction with other factors

• Scattered information about interaction between factors

The idea:

To manage cultivation factors to modulate responses to radiation
To analyze the combined effect of low-LET ionizing radiation and light quality on the development of soybean and Azuki bean seedlings.

Incubation in the dark

Incubation with different light regimes:
- White
- Dark
- Red
- Red/Blue

X-ray doses: 0, 0.3, 10 and 20 Gy

t4-t9: growth monitoring and sampling for structural and nutritional analyses
Analyses

Isoflavonoids:
- Daidzin
- Malonyldaidzin
- Glycitin
- Genistin
- Daidzein
- Glycitein
- Genistein

Flavonoids:
- Kaempferol-rutinoside
- Rutin
- Quercitrin
- Naringenin
- Naringin

Morphology
- Tissue organization
- Phenolics localization
Conclusion

• The effect of radiation (also *hormesis*) was dependent on light quality

• Very high doses were not responsible for growth aberrations

• Dose-response trends were not always linear

• Radiation-induced increase in antioxidant compounds in bean seedlings can be severely influenced by light quality already at very early stages of development

Take-home message

The interaction between ionizing radiation and other environmental conditions should be taken into account in the shielding design of plant-based modules of bioregenerative systems.
Perspective?

- To increase investigations with high-LET radiation
- Looking for opportunities for Space experiments
Thanks!