URBAN & SPACE FARMERS UNITE!

www.astroplant.io

@BORDER_LABS

BORDER LABS

European Space Agency

Avionics Control Systems

WEVOLVER

Association for Vertical Farming
Get involved, let’s chat after the talk.
WHO CARES ABOUT GROWING TOMATOES ON THE MOON OR MARS?

IN OUR OPEN DESIGN SESSION THE 7TH OF JULY AT BORDER SESSIONS FESTIVAL THE HAGUE, THE NETHERLANDS

Space farmers unite! Be part of an emerging open-source movement to help build the next generation galactic farming systems. Join our open session on the intersection of high-tech space and urban farming for inventive urban farmers, bio-hackers, IoT techies, and any creative with an interest in making our planets habitable for future generations.

Disruptive innovations have their origins in spacetech. It took the effort of smart entrepreneurs, designers and creative minds to make these technologies accessible for the wider public. Do you have green fingers? Or do you make stuff? ESA and Border Sessions offer you the opportunity to work with the people who feed our astronauts and find solutions for the challenges on earth, including unsustainable food practices, food waste and the corporatization of agriculture.

Join us by sending your morse code to our operator in the Hague. thieme@bordersessions.org
THREE OBJECTIVES

1. RESEARCH: Public data sets about plant growth
2. EDUCATE: Engaging a New Generation of Urban and Space Farmers
3. INNOVATE: Open Source hydroponics plant lab infrastructure
I. RESEARCH → MELiSSA and wider community
AstroPlant: part of the research into the Higher Plant Compartment
- Characterise plant growth
- Evaluating how plants grow in different environments
 .. for many plants and cultivars
Model Preliminary Structure

Process

Module

Physical

Biochemical

Morphological

Organ

Cell

Plant

Leaf

Photosynthesis
- CO2 absorption
- Sugar production
- H2O evaporation
- O2 release

Stem

Water transport
- Xylem: Water up
- Phloem: Sap down
- Xylem - Phloem

Root

Root zone
- Water & minerals absorption
- Gravitropism
- Respiration

Growth: metabolic reactions
- Link to biomass
- Gravitropism effects

Architecture
- Shape & structure
- Exchange surfaces

Environment
- Light flux
- Air: RH, O2, CO2, H2O
- Root zone: H2O, O2, minerals

AstroPlant v4
Semi-controlled growbox
- RaspberryPi + custom PCB
- Fully controllable custom growLED system (intensity + spectrum)
- Two or three fans
- Simple hydroponics system
- Sensors:
 - Temperature (air, water)
 - Humidity
 - CO2
 - Light
 - EC and pH
 - Regular camera + multispectral camera*
- Manual input by citizen scientist:
 - Size of leaves
 - Weight of the plants
 - Root length
 - etcetera
II. EDUCATE → Citizen Science, Science Education, Creative Learning, Interdisciplinary
Level 4 - Extreme Citizen Science
- Collaborative science - problem definition, data collection and analysis

Level 3 - Participatory Science
- Participation in problem definition and data collection

Level 2 - Distributed Intelligence
- Citizens as basic interpreters
- Volunteered thinking

Level 1 - Crowdsourcing
- Citizens as sensors
- Volunteered computing
electronics

digital fabrication

plant science

space science
Educational projects

- First one in Ghent (high school)
- AVANS (vocational education)
- ESA Education is building a program for 10-12 year olds

- Sept-Dec: pilot with 10 schools
Ghent

Project based learning
• 2 months preparation: research design
• 4 months executing research (January – April)

Topics:
• Effects of IR on plant growth (soy bean)
• Tech development: controlling temperature
• Science communication
Strategy

• Sept-Dec – AstroPlant pilot (~ 10 high schools) EU
• 2019 – rollout to 100+ schools and institutes
 • AstroPlant part of Moon Camp (ESA Education/ESEROs)
 • Global crowdfunding campaign (makers, schools, researchers)
 • *Novo Nordisk LIFE program (DK), other national programmes*
• 2020 – 1000+ schools, spinoff technologies
Global network of schools and citizen scientists
- Open data
ESA Education Activities on the Astroplant Citizen Science Project

ESA Education Office
ESA Education support to Astroplant

- *Plants, Food, Space and Technology* – the Astroplant topics integrate well with the school curricula across Europe.

- Space Food and plant growth is one of the topics covered in the new ESA school challenge: *Moon Camp*, to be launched in October 2018.

- A set of classroom activities inspired by the Astroplant kit has been created for first use in the *Moon Camp challenge*, and that will prepare the students to later participate in the AstroPlant citizen science project.
ESA Education support to Astroplant

- ESA Education will procure 3 prototypes Astroplant kits for school testing (during Astroplant development/test phase).

- After the official launch of Astroplant, **ESA Education will launch an educational call for schools, integrated with the second edition of the Moon Camp in school year 2019-2020**, to be part of the citizen science project.

- ESA Education can procure a limited number of final Astroplant kits (when cost/kit has reached affordable price) to support the citizen science project, through a European school loan scheme coordinated nationally by the participating European Space Education Resource Offices (ESEROs).
Moon Camp/Astroplant: ESA Education classroom resources

• ESA Education is developing a set of hands-on classroom resources and interdisciplinary classroom projects to support the citizen science project: Astroplant

• Students will investigate the conditions in which plants develop and identify plants suited for space travel

• **Learning objectives:** Plants, Food, Biology, Physics, Geology, Chemistry (TBC)

• **Themes:** Space Environment, Space Exploration

• **Target Group:** 6 to 16 years old
Astroplant: ESA Education classroom resources

Primary

AstroFood
Edible plants in space

AstroFarmer
Growing plants for future space missions

AstroCrops
Growing plants in a biodome

AstroHub
Sharing your results

Secondary

Classroom Projects
Interdisciplinary projects about plants in space

Biology
Which plants would survive in space?

Physics
Danger! Radiation overload

Geology
Are the soils all the same?
For more information contact:

Cátia Cardoso
Catia.Cardoso@esa.int
III. INNOVATE \rightarrow Open Source Technology, Open Data, Open Education
Being Open

Open Source Software (GNU LGPL)
Open API for plant data (under construction)
Open Source Hardware (CERN OHL)
Online Collaboration (WeVolver/git, Slack)

→ core team of 5 volunteers working on AstroPlant
→ new electronics board developed by volunteer electronics engineer in Switzerland
→ Collaboration with OpenAg on standardisation of plant data models
→ Open source EC and pH sensors developed by engineer in USA
→ More upcoming collaborations: Greek Agri University (plant analysis and tech dev), Kiev University, Plant Geek, Kapelice.. etc.

All because of the open nature of the project
a first prototype..
a second prototype..
a third prototype..
(operating perfectly for nearly 5 months: first ‘space peppers’ eaten)
Custom LED system (controlled)

Various off-the-shelf sensors and actuators:
- CO2
- Light intensity
- Temp
- Rel. humidity
- Water temp
- pH/EC

Raspberry Pi Zero W + extension shield

All written in Python
AstroPlant extension shield
LED control system
pH/EC board and probes
Next: multispectral / hyperspectral imaging
You want to hack AstroPlant? You can.
PLEASE DO GET IN TOUCH!

thieme@astroplant.io
AstroPlant@ESA.int

(or Catia.Cardoso@ESA.int for the educational program)
Some additional slides
Advisers and partners
Christel Paille, Christophe Lasseur – MELiSSA, ESA
Raffaella Papolardo – ESA
GJ van t Veen – Dutch Coast, Jungle Works
Michel Behre – Border Sessions
Angelo Vermeulen – SEAD, TU Delft
WeVolver – open source hardware
Avionics – electronics company
Association for Vertical Farming – plant science & vertical farming
Q&A
Your input and involvement needed – 5 MINUTES

How would you like to be involved? – some ideas

• OPEN SCIENCE
 • Draft a research design appropriate for the project AND your research

• OPEN EDUCATION
 • Propose / sketch an engaging educational activity
 • e.g. How does light influence plant growth?

• OPEN INNOVATION
 • Help us improve the kit! Build it, test it, improve it.
I. Design Challenge “Design a Design Challenge”
 • Mixing expertise

II. Hack AstroPlant – using SCAMPER approach
 • Substitute, combine, adapt, maximize…

III. AstroPlant Ideation using COCD Box
I. Design Challenge: Design a Design Challenge

• Suppose you’re a...
 • Entrepreneur → e.g. design challenge on business modeling for AstroPlant
 • Biologist → e.g. design challenge to develop a plant-science research design
 • Maker → e.g. design challenge “make an AstroPlant from waste materials”

• Adding to the template
 • Questions, challenges, resources, links, target group + your email if you want to be involved in co-developing the challenge

• I will turn it into short online challenges that will be provided to young explorers using AstroPlant
IIa. Hack AstroPlant

- SUBSTITUTE: parts, the whole, material...
- COMBINE: functions, material, just different...
- ADAPT: other color, place, use, form, timing...
- MAXIMIZE: bigger, stronger, longer, more time, macro level, use more often...
- MINIMIZE: smaller, lighter, shorter, micro level, less important...
- PUT TO OTHER USES: other context...
- ELIMINATE: parts, functions, material...
- REVERSE: sequence, upside down, inside out...
IIb. Hack AstroPlant
III. Ideation challenge

- Where to go with AstroPlant: now, next, and in 5 years?
- Example: building a Moon Lander demonstrator (actually…)
- Start individually with just writing down lots of ideas for AstroPlant… then boil down your grand list of ideas down to about 15 really good ones (5 in each color – blue, red and yellow).
- Process
 - Brainstorm lots of ideas
 - Boil down to max 3-5 favs per colour
30 minutes !