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Why greywater (GW)?
* Greywater is all domestic water excluding toilet
effluents (black water)

* Reuse of greywater can potentially reduce water use
by up to 50%
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Major usages of water

Toilet flushing Irrigation
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Composition of domestic wastewater:
quantity and quality

Most domestic effluent is greywater (G\W), rather than

blackwater ( and feces)
50-200 L/person/day 30-50 L/person/day
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Composition of domestic wastewater:
guantity and quality

Approximate loads % in each source

(kg/person/year) Urine

P 0.8 10 50 40

TOC 11.5 40 10 50




Composition of domestic wastewater:
quantity and quality

1. GW is less polluted. Thus, it can be treated by
simple means and be safely reused.

2. If reused for irrigation, GW can replace or lower
the need for fertilization




What are the challenges?

Reusing greywater

Two major N
difficulties

Environmental effects: Health risks: spread of

i.e. elevated levels of pathogenic organisms
surfactants & dissolved ions




Pollutants in raw (untreated) greywater
quality varies from negligible to significantly
high concentrations
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Pollutants in raw (untreated) greywater quality
varies from negligible to significantly high
concentrations

Wide range of concentrations
I I

- -

Surfactants -

TN |

T

0 20 40 60 80
Concentration (mgL™)




Unhealthy plants following irrigation with
raw GW




Fecal coliform

* Indicator for potential presence of pathogens

e |ts concentration in raw GW varies and can be
similar to full domestic wastewater
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Potential hazards of GW — Public Health

Pathogenic Bacterial Gene Copies
in Treated Greywater - Not Disinfected
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Maximum concentration for safe reuse based on QVIRA

E. coliin treated greywater
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Insights so far

1. GW has great potential as an alternative water
source that can alleviate water and food scarcity
(if used for on-site farming).

2. There are still challenges that must be resolved
for reliable and safe use of greywater.

Greywater must be treated before it can
be reused.



Technological challenges of treating GW

1. Treatment must
consider changing
quality and quantity

2. Low tech, low cost
systems are required??

3. Simplicity in operation
and maintenance

4. High reliability
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Reliability and failure definitions

General definition

In GW biological treatment

Reliability = The probability that no The probability that the
operational interruptions  system will produce treated
will occur during a stated GW effluent of satisfactory
time interval qguality during a stated time

interval

Failure An event where the When the quality of the
system stops performing  treated GW effluent is not
as required satisfactory

Assumption Failures are considered as After repair of a certain

repairable

failure the system is “as ...
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Reliability function R(t)

Failure is a random variable and can be described with statistical tools:

R(t): Reliability function, is a survival function

F(t): The probability that an item will operate for a certain amount of time
without a failure
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Mean Time Between Failures (MTBF)

* Mean Time Between Failures (MTBF) can be calculated by
integrating the reliability function R(t)

MTBF = T R(t)dt =T[1 —F (t)]dt

* In order to calculate the MTBF, R(t) needs to be measured or
assumed

R (t) can be described by distribution models such as:

*Normal *Log-normal

*Exponential



Reliability and MTBF
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D95|gn considerations Recirculating Vertical Flow

a) Wastewater flows directly Constructed Wetlands (RVFCW)

into the plant root
zone/filter

b) Water trickles down through
the filter and into the
reservoir

c) The bed: planted organic
soil, high surface media,
limestone gravel




Design considerations

d)

f)

Recirculating Vertical Flow

From the reservoir the Constructed Wetlands (RVFCW)

water is recycled back to
the bed several times

Recirculation pump keeps
the wetland constantly wet
and aerated

Treatment process:
Mechanical filtration,
microbial degradation,
nitrification, and buffering é

by limestone gravel




DES|gn con5|derat|ons Recirculating Vertical Flow

: Constructed Wetl RVFCW
g) The treated water is onstructed Wetlands ( )

released for drip irrigation
via a disinfection unit (e.g.
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It is possible to meet strict guidelines for unlimited
irrigation even with simple biological treatment units
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Disinfection

Low cost and pressure
, UV device

Simple Chlorinator, using
chlorine tablets
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Membrane bioreactor (MBR) - Combines
biological treatment and physical separation
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10-1° 10 108 10”7 106 103

x . ol Depth filtration

Reverse osmosis TN Micro-filtration (to> 1 mm)
» Y 4 Ultra-filtration

Nano-filtration




MBR: Major Pros and Considerations

* Independent control (decoupling) on hydraulic retention
time (HRT) and sludge retention time (SRT)

* VVery high effluent quality:
no SS; low COD; pathogens free; rich in nutrients

* Membrane fouling is a significant factor

* In AnMBR (mainly) - High SRT — Fairly low sludge
production

* AnMBR — biogas production
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Operational energy balance

m Anaerobic digester / reactor stirring
m AO/A20 reactor stirring & Equalisati
% Air pumping

N~ Membrane scouring by air sparging

® Membrane scouring by gas sparging

Energy demand

Energy Recovery

l

m Power energy recovery from methane

Energy consumption (kWh per m?)

1.1
0.9
0.7
0.5
0.3
0.1

Scenario 1 Scenario 2

-0.1
-0.3
-0.5

Modified from: Pretel et al., 2016 (JEMA)

Smith et al. 2014 (ES&T)



Capital and operational costs

Scenario 1 Scenario 2
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Summary

« Greywater reuse can save significant amounts of water but
must be treated prior to reuse.

« Treatment and reuse can recover nutrients, energy, support
plant growth (food) which can also sequester CO, and
produce O.,.

* Regardless to the treatment of choice, it must be robust,
reliable, and able to endure large variations in water quality
and quantity.

* Irrigation effluents can be recycled through the system and
water exchange should be determined to prevent salinization.
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Model for off-grid near zero water discharge Biogas
aquaponics — which can be used with treated GW

Water Feed Solid waste (sludge) UASB
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Summary: off-grid system.

* Theoretic full energy recovery:
» ~1 ton fish stock

* 2% daily feeding rate:
20kg, 45%protein feed per day
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Summary: off-grid system.
 Nutrient recovery by anaerobic digestion:

* 4-5 times bigger vegetable area
* 3500 m?2 tomato beds Vs 750m?

« 250kg tomato per day Vs 60kg

Vegetable bed

Full (99.5%) water
recovery (recirculation) “§" /"
except for l @ l

evapotranspiration = ST o
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Required and Available Energy for
Wastewater Treatment, Exclusive of Heat Energy

« Energy required for secondary wastewater
freatment

1,200 to 2,400 MJ/1000 m?

Energy available in wastewater for treatment
(assume COD =5.0 g/m?3)
Q = [500kg COD1000 m3) (1000 m3) {13 M/ kg COD)

6,000 MJ/1000 m?

« Energy available in wastewateris 2 to 4 times
the amount required for treatment

Based on G. Tchobanoglous



