Close life support systems-Rome 2018 Greywater reuse: Benefits, Challenges, and means for Safe Reuse

Amit Gross

Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel. Email:amgross@bgu.ac.il

Why greywater (GW)?

- Greywater is all domestic water excluding toilet effluents (black water)
- Reuse of greywater can potentially reduce water use by up to 50%

Major usages of water

Toilet flushing

www.shutterstock.com · 491956057

Irrigation

www.shutterstock.com · 584331964

https://vimeo.com/51587224

Composition of domestic wastewater: quantity and quality

Most domestic effluent is greywater (GW), rather than blackwater (urine and feces)

50-200 L/person/day

30-50 L/person/day

www.shutterstock.com - 571827604

Composition of domestic wastewater: quantity and quality

Approximate loads		% in each source		
(kg/person/year)		GW	Urine	Feces
Ν	4-5	3	87	10
Ρ	0.8	10	50	40
К	1.8	34	54	12
тос	11.5	40	10	50

Composition of domestic wastewater: quantity and quality

- 1. GW is less polluted. Thus, it can be treated by simple means and be safely reused.
- 2. If reused for irrigation, GW can replace or lower the need for fertilization

What are the challenges?

Pollutants in raw (untreated) greywater quality varies from negligible to significantly high concentrations

Pollutants in raw (untreated) greywater quality varies from negligible to significantly high concentrations

Unhealthy plants following irrigation with raw GW

Fecal coliform

- Indicator for potential presence of pathogens
- Its concentration in raw GW varies and can be similar to full domestic wastewater

Potential hazards of GW – Public Health

Pathogenic Bacterial Gene Copies in Treated Greywater - Not Disinfected

Maximum concentration for safe reuse based on QMRA

Insights so far

- GW has great potential as an alternative water source that can alleviate water and food scarcity (if used for on-site farming).
- 2. There are still challenges that must be resolved for reliable and safe use of greywater.

Greywater must be treated before it can be reused.

Technological challenges of treating GW

- Treatment must consider changing quality and quantity
- 2. Low tech, low cost systems are required??
- 3. Simplicity in operation and maintenance
- 4. High reliability

Reliability and failure definitions

	General definition	In GW biological treatment
<u>Reliability</u>	The probability that no operational interruptions will occur during a stated time interval	The probability that the system will produce treated GW effluent of satisfactory quality during a stated time interval
<u>Failure</u>	An event where the system stops performing as required	When the quality of the treated GW effluent is not satisfactory

<u>Assumption</u>	Failures are considered as	After repair of a certain
	repairable	failure the system is "as
		aood as new"

Reliability function R(t)

Failure is a random variable and can be described with statistical tools:

R(t): Reliability function, is a survival function

F(t): The probability that an item will operate for a certain amount of time without a failure

(Lazzaroni 2011)

Mean Time Between Failures (MTBF)

• Mean Time Between Failures (MTBF) can be calculated by integrating the reliability function R(t)

$$MTBF = \int_{0}^{\infty} R(t) dt = \int_{0}^{\infty} \left[1 - F(t)\right] dt$$

- In order to calculate the MTBF, R(t) needs to be measured or assumed
- R (t) can be described by distribution models such as:

Reliability and MTBF

Design considerations

- a) Wastewater flows directly into the plant root zone/filter
- b) Water trickles down through the filter and into the reservoir
- c) The bed: planted organic soil, high surface media, limestone gravel

Recirculating Vertical Flow Constructed Wetlands (RVFCW)

Design considerations

- d) From the reservoir the water is recycled back to the bed several times
- e) Recirculation pump keeps the wetland constantly wet and aerated
- f) Treatment process:
 Mechanical filtration,
 microbial degradation,
 nitrification, and buffering
 by limestone gravel

Recirculating Vertical Flow Constructed Wetlands (RVFCW)

Design considerations

- g) The treated water is released for drip irrigation via a disinfection unit (e.g. UV)
- h) The system is modular, enabling the attachment of additional units

Recirculating Vertical Flow Constructed Wetlands (RVFCW)

It is possible to meet strict guidelines for unlimited irrigation even with simple biological treatment units

Disinfection

Low cost and pressure , UV device

Simple Chlorinator, using chlorine tablets

Disinfection

Membrane bioreactor (MBR) - Combines biological treatment and physical separation

MBR: Major Pros and Considerations

- Independent control (decoupling) on hydraulic retention time (HRT) and sludge retention time (SRT)
- Very high effluent quality: no SS; low COD; pathogens free; rich in nutrients
- Membrane fouling is a significant factor
- In AnMBR (mainly) High SRT Fairly low sludge production
- AnMBR biogas production

Operational energy balance

Smith et al. 2014 (ES&T)

Capital and operational costs

Summary

- Greywater reuse can save significant amounts of water but must be treated prior to reuse.
- Treatment and reuse can recover nutrients, energy, support plant growth (food) which can also sequester CO₂ and produce O₂.
- Regardless to the treatment of choice, it must be robust, reliable, and able to endure large variations in water quality and quantity.
- Irrigation effluents can be recycled through the system and water exchange should be determined to prevent salinization.

Thanks for your attention

Many Colleagues (particularly): Prof. Eran Friedler, Dr. Roy Bernstein Dr. Osnat Gillor Dr. Stefan Leu Prof. Nedbal Ladislav

Funding: Maccabi Carasso Water Authority Koshland Foundation RCF

Summary: off-grid system.

- <u>Theoretic full energy recovery:</u>
 - ~1 ton fish stock
 - 2% daily feeding rate:

20kg, 45% protein feed per day

Summary: off-grid system.

- Nutrient recovery by anaerobic digestion:
 - <u>4-5 times bigger vegetable area</u>
 - 3500 m² tomato beds Vs 750m²
 - 250kg tomato per day Vs 60kg

Full (99.5%) water recovery (recirculation) except for evapotranspiration

Required and Available Energy for Wastewater Treatment, Exclusive of Heat Energy

- Energy required for secondary wastewater treatment
 - 1,200 to 2,400 MJ/1000 m³

Energy available in wastewater for treatment (assume COD = 5.0 g/m³)

Q = [500kg COD/1000 m³) (1000 m³) (13 MJ/ kg COD)

6,000 MJ/1000 m³

 Energy available in wastewater is 2 to 4 times the amount required for treatment

Based on G. Tchobanoglous