

£

Ontario Agricultural College Department of Plant Agriculture Division of Horticultural Science Guelph, Ontario CANADA N1G 2W1 Tel. (519) 824-4120 Fax. (519) 767-0755

MELiSSA

Memorandum of Understanding ECT/FG/MMM/97.012

TECHNICAL NOTE: 40.3

Yield Responses of MELiSSA Candidate Crops to Environment Conditions

Version: 1 Issue: 0

Cloutier G., Dixon M.A.,

November 1998

Table of Contents

1.0 - Introduction
2.0 - Yield Responses of Crops to Environment Conditions
2.1 - Lettuce
2.2 - Potato
2.3 - Rice
2.4 - Tomato
2.5 - Soybean
2.6 - Spinach
2.7 - Wheat
3.0 - Yield Estimates of MELiSSA Candidate Crops Grown Under Specific Environment
4.0 - Simple Models of Crop Response to Light and Carbon Dioxide
4.2 - Carbon Dioxide
5.0 - References

List of Figures

Figure 1. Net Carbon Exchange rate (NCER) for 40 day old whole Soybean plants	13
---	----

Yield Responses of MELiSSA Candidate Crops to Environment Conditions

1.0 - Introduction

Earlier higher-plant studies in the MELiSSA program have involved stead-state mass transfer simulations between higher plant chambers and the four MELiSSA micro-biological compartments (Poughon, 1997). These simulations incorporated wheat, soybean, potato, lettuce, rice, onion, spinach and tomato as candidate crops. Edible and inedible biomass production values used in these simulations were largely derived from field cultivation trials. Closed environment crop production, however, eliminates many of the stresses of field cultivation (water deficits, nutrient deficiency) and offers the opportunity to enhance crop productivity in other ways, such as through unique lighting configurations and CO_2 enrichment (Dixon et al., 1997). Earlier technical notes outlined the physiological basis of closed environment culture and recommended a set of cultural management strategies for each candidate crop (TN 40.1). They also have also provided estimates of the mineral and proximate composition of crops grown in controlled environments (TN 40.2). The purpose of this technical note is to summarize observed relationships between crop yield and various controllable environment conditions and to improve edible and inedible biomass estimates for candidate crops produced in these controlled conditions. These improved estimates may then serve as input parameters for future MELiSSA-HPS steady-state simulations.

A review of literature in the area of controlled environment cultivation (both greenhouse and growth chamber studies) was conducted. As explained in earlier technical notes, little information could be obtained for onion cultivation in closed systems and so, for the purposes of this technical note, has been excluded from future consideration. For each of the remaining seven candidate crops (lettuce, potato, tomato, rice, soybean, spinach, wheat) a summary of crop yield response to CO_2 enrichment, light intensity (Photosynthetic Photon Flux, PPF), photoperiod, temperature and nutrient supply (if present in the literature) is presented. The role of each of these key environment variables in crop production has been described earlier and the reader is therefore referred to TN 40.1 (Cloutier and Dixon, 1997). Water supply (root zone and atmospheric) is not discussed as an environment factor since it is assumed that all crops are produced using a hydroponics system which confers an unlimited water supply to the crop. Simple models relating crop photosynthesis (yield) to PPF and CO_2 are also presented. These models serve to identify how further enhancements in the crop yields presented in Section 3.0 can be made.

2.0 - Yield Responses of Crops to Environment Conditions

2.1 - Lettuce

Crop: Lettuce (Lactuca sativa L.)			
Variable	Variable Range	Yield Response	Reference
CO2	350-3200 (ppm)	- An increase in leaf dry weight on the order of 40 - 75% has been observed when CO_2 was enriched to 1000 ppm at moderate (450 µmolm ⁻² s ⁻¹ PAR) light intensities, relative to 350 ppm, This gain was observed only during the first 15 days of growth. - At CO ₂ concentrations greater than 1000 ppm, lettuce leaf growth was most responsive to a combination of high PPF (850 µmolm ⁻² s ⁻¹ PAR) and CO ₂ enrichment. No increase in growth was observed when CO ₂ concentrations were at 2000 ppm.	Knight and Mitchell (1988); Knecht and O'Leary; (1983); Ikeda et al (1988)
Light Intensity (PPF)	50 - 950 (μmolm ⁻² s ⁻¹ PAR)	 An increase in light intensity confers an increase in lettuce leaf yield but at the expense of greater incidences of tip burn. Tip burn is a result of low calcium levels and is associated with environmental conditions conducive to rapid dry matter accumulation 	Gaudreau et al, (1994); Tibbitts and Rao (1968); Cox et al, (1976); Knight and Mitchell (1983); Ikeda et al, (1988);
Photoperiod	16, 20 and 24 (hrs)	 Significant increases on the order of 100 - 135% were observed at photoperiods of 24 hrs relative to 16 hr photoperiods. The incidence of tip burn increases with increasing daily integrated PPF, thus longer photoperiods warrant a reduced instantaneous PPF. A doubling of the photoperiod at ¹/₂ the PPF confers a greater yield 	Gaudreau et al, (1994); Koontz and Prince (1986); Craker and Seibert (1983);

Temperature		- The relationship between lettuce growth and temperature is not simple and is dependent upon light intensity. A positive relationship was established between temperature and lettuce yield but only at high PPFs -Temperatures above 21-22 °C promote seed-stalk elongation (bolting), puffy heads and bitterness	Kanaan and Economakis (1992); Whitaker et al, (1974)
Nutrient Supply	30 mM NO ₃ ; 5 mM NH ₄ ⁺ + 25 mM NO ₃ ; 1 mM NO ₃	 Application of N as 25 mM NO₃⁻ and 5 mM NH₄⁺ resulted in a 31% percent increase in leaf dry weight relative to application rates as 30 mM NO₃⁻; the degree of chlorosis decreased with increasing nitrogen nutrition and with application of NH₄⁺ as an N source; A leaf dry weight increase on the order of 16% was observed when the N concentration was doubled from 15 mM NO₃⁻ to 30 mM NO₃⁻. 	Knight and Mitchell (1983)
Water Supply (Atmospheric and Root zone)	50 - 85% R.H.	 Significantly higher growth rates and leaf dry weights (increases of about 62%) were observed in plants grown under 85% R.H. compared to 50% R.H. This increase was greatest for soil grown plants Water supply to the root zone through hydroponics reduces the degree of water stress and enhances yield 	Tibbitts and Bottenberg (1976)

2.2 - Potato

Crop: Potato (Solanum tuberosum L.)			
Variable	Variable Range	Yield Response	Reference
CO2	300 - 1000 ppm	 CO₂ enrichment to 1000 ppm increased total plant dry weight and tuber yield by 39 and 34% respectively These increases were greater under lower PPF and shorter photoperiods 	Wheeler et al, (1991); Wheeler et al, (1994b);
Light Intensity (PPF)	400 - 800 μmolm ⁻² s ⁻¹ PAR	- Increasing PPF from resulted in a 24% increase in tuber yield at 350 ppm CO_2 and a 12 hr photoperiod. - The magnitude of increased yield resulting from a PPF increase was greatest under shorter photoperiods and lower CO_2 concentrations. At CO_2 concentrations of 1000 ppm, and a 24 hr photoperiod tuber dry weight decreases were observed on the order of 10 %	Wheeler et al, (1991)
Photoperiod	12 and 24 hrs	 Tuber yields increased with long days (by about 10%). Short days followed by longer days had an enhancing effect as well Early reports indicate that short days are required for tuber growth but some cultivars are not obligate in the photoperiod requirement and benefit from longer days if temperature is lower 	Wheeler and Tibbitts (1997); Cary (1986);

Temperature	33/25 °C; 20/10 °C	- Tuber growth rates and yields were greatest under lower temperatures and decreased with increasing temperature and higher daily integrated PPF. This is consistent with the idea that increased photoperiods warrant cooler temperatures in order for	Midmore and Prange (1992)
		tuber formation to occur	

2.3 - Rice

Crop: Rice (Oryza sativa L.)			
Variable	Variable Range	Yield Response	Reference
CO2	350 - 900 (ppm)	- Rice photosynthetic and growth rate and yield increased for CO_2 concentrations up to 500-600 ppm but saturated at higher values	Rowland et al (1991); Rowland et al (1990); Baker et al (1990);
Light Intensity (PPF)	350 -1000 μmolm ⁻² s ⁻¹ PAR	- high PPF values increased grain yield by as much as 2-3 times the yields obtained under greenhouse cultivation	Kozai et al (1995);
Photoperiod	8 - 24 hrs	 grain yield was not shown to increase under continuous lighting, harvest index decreased a switch to continuous lighting did not promote or delay the time to harvest 	Volk and Mitchell (1995); Azmi and Ormrod (1971)
Temperature	35/18 °C; 35/27 °C; 35/35 °C; 41/18 °C	- highest photosynthetic rates were observed at temperatures of 41/18 or 35/35 °C	Azmi and Ormrod (1971)

2.4 - Tomato

Crop: Tomato (Lycopersicon esculentum L.)			
Variable	Variable Range	Yield Response	Reference
CO2	300 - 1500 ppm	 CO₂ enrichment at 1500 ppm increased the fruit yield by as much as 80% of early and 22% of total yields. This effect was growth stage dependent with the greatest effects occurring during the first few weeks of treatment the effects of CO₂ enrichment were greatest at a day/night temperature difference of 9 °C, as compared to 3 °C. enhanced yield due to CO₂ enrichment has been attributed to a re-allocation of assimilates from roots to fruits 	Yelle et al, (1990); Tripp et al, (1991); Willits et al, (1989);
Light Intensity (PPF)	400 - 2000 μmolm ⁻² s ⁻¹ PAR	 a positive relationship existed between PPF and tomato yields, with absolute yields dependent upon ambient PPF in the greenhouse supplementary lighting increased yields by 100% as compared to tomatoes grown in ambient conditions a light curve for tomato production in closed chambers could not be located in the literature 	McAvoy et al, (1989); Boivin et al, (1987); Vezina et al, (1991); Tremblay et al, (1984)
Temperature	Day Temperature: 13 - 22 °C Night Temperature: 12 - 21 °C	 day night temperatures of 9 °C accelerated fruit growth ripening low greenhouse air temperatures did not have a significant impact on fruit yield providing deviations from the optimal day/night temperatures of 22/17 °C did not exceed 3 °C cooler night temperatures than 14 °C are reported to have resulted in increased root dry mass and reductions in the rate of fruit development day/night temperature differences increased the effect of CO₂ enrichment on yield 	Gent (1988); Papadopoulos and Tiessen (1983); Gosselin et al, (1983);

University of Guelph - MELiSSA Technical Note 40.3 - Page 7

٦

Nutrient Supply 5-20 meq L ⁻¹	 increasing nitrate concentrations increased yields if sulphate was less than 25 meq L⁻¹ fruit yield was higher at higher nutrient solution concentrations 	Martinez et al, (1984); Pardossi et al, (1987);
--	---	--

2.5 - Soybean

Crop: Soybean (Glycine max L.)			
Variable	Variable Range	Yield Response	Reference
CO2	160 - 5000 ppm	- A positive yield response is observed with increasing CO_2 concentration. Seed yields increased from between 20% and 57% relative to ambient CO_2 concentrations - Increases in photosynthetic rates and the number of pods per plant were observed but highest yields were observed at 1000 ppm, with higher concentrations being supra- optimal at study PPF levels	Cooper and Brun (1967); Campbell et al, (1990); Egli et al, (1970); Acock et al, (1985); Wheeler et al, (1994b); Sionit et al., (1987); Wheeler et al., (1993);
Light Intensity (PPF)	250 - 1500 μmolm ⁻² s ⁻¹ PAR	- Increased photosynthetic and growth rates were observed with increasing PPF - the degree of increase was found to be dependent upon CO_2 concentration, with the greatest responses occurring at concentrations near 1000 ppm	Campbell et al, (1990); Acock et al, (1985); Egli et al, (1970);
Photoperiod	12 - 22 hrs	- Soybean is a photoperiod sensitive crop. Photoperiods less than 12 hours were found to be flower- inducive while longer (22 hrs) photoperiods were found to low or non-inducive	Wilkerson et al, (1989); Acock and Acock (1995)
Temperature	18/12 °C; 22/16 °C; 26/20 °C;	- Number of pods and seeds and seed yields increased with greater day and night temperatures. This increases were on the order of 50% at 1000 ppm CO_2 relative to the lowest temperature treatment	Sionit et al, (1987)

2.6 - Spinach

Crop: Spinach (Spinacea o	Crop: Spinach (Spinacea oleracea L.)			
Variable	Variable Range	Yield Response	Reference	
CO2	350 - 1500 ppm	 spinach showed a positive response to CO₂ enrichment up to 1% No increase in leaf dry weight was observed at higher concentrations fresh weight harvest increased 1.5- 2.0 over 350 ppm CO₂ controls when grown at 750 ppm CO₂. This conferred a 7-10 day earlier harvest. CO₂ enrichment is reported to affect fresh weight and leaf length rather than leaf number the effect of increasing CO₂ concentrations was greatest at cooler temperatures (20 °C) rather than at warmer temperatures (30 °C) 	Pfeufer and Krug (1984); Kawashima and Kurozumi (1990)	
Light Intensity (PPF)	10 - 22 molm ⁻² day ⁻¹ PAR	 Spinach yield was found to be highly correlated with daily integrated PPF. Yield was found to increase by 0.89% for every 1% increase in integrated daily PPF. Individual spinach plant PPF saturation occurred at 25molm⁻²day⁻¹ PAR 	Both et al, (1997); Glenn et al, (1984)	
Photoperiod	13 - 16 hrs	 a day length of 16 hrs increased leaf number from an average of 8.9 to 16.9 per plant dry weight under 16 hr photoperiods increased plant weight by 160% of masses obtained under 13 hrs. Relative growth rate and leaf area were also observed to increase longer photoperiods stimulated bolting 	Sugiyama (1990); Both et al, (1997);	

Temperature	5 - 25 °C	 Spinach is reported to have developed normally at air temperatures near 5 °C. Higher temperatures resulted in greater yields though no atmospheric temperature optimum could be located in the literature an inverse relationship between hydroponics solution temperature and spinach yield was observed during summer cultivation in the greenhouse. The converse was observed in the winter months 	Both et al, (1997); Boese and Huner (1990); Ikeda et al, (1995)
Nutrient Supply	0.5 - 12 mM	- A positive relationship was found between N application and spinach yield and photosynthesis	Biemond et al, (1996); Evans and Terashima (1988)

2.7 - Wheat

Crop: Wheat (Triticum aestivum L.)								
Variable Variable Range		Yield Response	Reference					
CO2	350 - 1000 ppm	 A positive relationship exists between atmospheric CO₂ concentrations and grain yield. An increase in wheat relative growth rate on the order of between 20% and 50% has been observed when atmospheric CO₂ concentrations approached 1000 ppm . Studies have also shown a saturation of wheat photosynthetic capacity near 1000 ppm Intraspecific competition has also been noted, suggesting that planting density may be a factor in the efficacy of CO₂ enrichment through the effects of light attenuation Some reports indicate that there is no response (tiller numbers or plant development) to CO₂ enrichment 	Du Cloux et al (1987); Wheeler et al, (1993); Moot et al, (1996); Gifford (1977)					

Light Intensity (PPF)	400 - 2000 μmolm ⁻² s ⁻¹ PAR	 Grain yield approached 60g m⁻²day¹(total yield aprx: 4.5 Kg m⁻²) as PPF increased to 2000 μmolm⁻²s⁻¹ PAR. This corresponds to an 200% increase relative to 500 μmolm⁻²s⁻¹ PAR. The number of heads, seed per head and mass per seed increased as PPF approached 2000 μmolm⁻²s⁻¹ PAR. Harvest index increased from 41 to 44% as PPF increased 	Bugbee and Salisbury (1988)	
Photoperiod	8, 12 and 16 hrs	 Days to anthesis decreased with increasing photoperiod As total daily integrated PPF increased, so did the average crop growth rate, seed yield, head yield and mass per seed 	Ortiz-Ferrara et al, (1995); Bugbee and Salisbury (1988)	
Temperature	13/10 °C and 23/18 °C	 Rate of growth was less at cooler temperatures but total growth over the same period of development was greater in cooler grown crops Main shoot and tiller leaves were shorter in cooler grown plants Temperature increases conferred advances in anthesis and grain filling 	Lawlor et al, (1988); Moot et al, (1996)	
Nutrient Supply	0.45 mM NO ₃ ⁻ twice weekly and 2.0 mM NO ₃ ⁻ twice weekly	- Increased nitrate significantly increased tiller and grain mass	Lawlor et al, (1988)	
Water Supply (Atmospheric and Root zone)	No specific information on the influences of R.H. or water supply sould be found for wheat in closed systems			

Сгор	Environment Conditions			Edible	Non-	Harvest	Days to	Source	
	CO ₂ Conc. (ppm)	PPF (µmolm ⁻² s ⁻¹ PAR)	Photoperiod (Length of Day)	Temperature (Day/Night, °C)	Biomass ^{1.}	Edible Biomass	Index ² (%)	Harvest	
Wheat cv. Yecora Rojo Edible: grain ^{1.}	1200	2000 (HPS & Metal Halide) ^{3.}	20 hr	20/15	2.3 g plant ⁻¹	2.9 g plant ⁻¹	44	79	Bugbee and Salisbury (1988)
Soybean cv. McCall Edible: seed	1000	300 (HPS)	12 hr	26/20	33.3 g plant ⁻¹	40.7 g plant ⁻¹	45	90	Wheeler <i>et</i> <i>al</i> (1993)
Potato cv. Norland Edible: tuber	1000	400 (HPS)	12 hr followed by 24 hr	19/16	1100 g plant ⁻¹	1100 g plant ⁻¹	50	112	Wheeler and Tibbitts (1997)
Tomato cv. Calypso Edible: Fruit	350	ambient (400 - 2000) (sun; glasshouse)	ambient (Jan-Nov)	22/17	20.6 Kg plant ⁻¹	3.9 Kg plant ⁻¹	84		de Koning and de Koning (1989)
Lettuce cv. Waldmann's Green Edible: Leaf	1000	290 (HPS)	16 hr	22/22	8.8 g plant ⁻¹	0.61 g plant ⁻¹	94	28	Wheeler et al (1994a)
Spinach cv. Nordic Edible: Leaf	350	190-380 (Greenhouse with HPS as a supplement)	16 hr	24/18	6.8 g plant ⁻¹	2.3 g plant ⁻¹	74	33	Both <i>et al</i> (1996)
Rice cv. Ai-Nan-Tsao Edible: Grain	350	350 (HPS)	8 hr	37/25	1.6 g plant ⁻¹	1.5 g plant ⁻¹	52	83	Volk and Mitchell (1995)

3.0 - Yield Estimates of MELiSSA Candidate Crops Grown Under Specific Environment Conditions

¹ Edible fraction refers to that presented for each crop type; ² Harvest Index = Edible Biomass/Total Plant Biomass; ³ Lamp type used is given in brackets. Abbreviations: cv. = cultivar; PFF = Photosynthetic Photon Flux;

4.0 - Simple Models of Crop Response to Light and Carbon Dioxide

4.1 - Light

Figure 1 presents a typical relationship between light intensity (PPF) and net photosynthesis (growth), expressed as net carbon exchange rate (NCER) for a single plant or leaf. This same profile was presented in TN 40.1 but it is used here to model the relationship between crop growth, yield and light intensity.

Figure 1. Net carbon exchange rate (NCER) for 40 day old whole soybean plants in small plant growth chambers containing four plants measured over a range of photosynthetic photon fluxes. Carbon dioxide concentration was maintained at 375 μ mol/mol (adapted from Stasiak et. al., 1998).

The x-intercept of this curve is known as the light compensation point. At PPF levels lower than the compensation point, respiratory losses of CO_2 are greater than photosynthetic fixation and no net biomass accumulation (yield) is possible. At PPF levels greater than the compensation point, photosynthetic rates are greater than respiration rates and there is a net accumulation of biomass. At high PPF levels there is a saturation of the photosynthetic complexes. Above the point of saturation there is no net return on increased radiation supply.

The curve in Figure 1 shows how photosynthesis in single leaves or plants changes with irradiance level. This curve is not typical of the response of full canopy systems. Light attenuation in full canopies results in a situation where leaves of the upper canopy are light saturated while those of the lower canopy are not. Because of this attenuation, full canopy systems are saturated at irradiance levels much greater than those of single plants. Further, some C_4 plants show even less tendency to saturation (Baker and Musgrave, 1964). Despite the fact that full canopies systems exhibit a higher

point of saturation, crop yield response to PPF is given by the profile presented above, but shifted to the right. It is important to note that full canopy saturation has is difficult to demonstrate at moderate to high canopy leaf area indexes. As a result, many of the yields presented in Section 3.0 can be further augmented by changing the geometry of radiation supply and by using very high powered lighting systems. This is the rationale behind the inclusion of an micro-wave based inner-canopy lighting system in one of the University of Guelph chambers (Dixon *et al*, 1997).

4.2 - Carbon Dioxide

The net photosynthetic response model for CO_2 is very similar to the light curve presented in Figure 1. At high CO_2 levels, depending on the crop, there is a saturation of RuBP and hence the net photosynthetic rate plateaus. These points of saturation have been identified in Section 2.0 for each crop, where possible. It is important to note that there is an interaction between CO_2 supply and PPF. At higher PPF, there is a tendency for the CO_2 saturation point to shift to the right since crop photosynthesis is not limited by products of the light reactions.

4.3 - Simple Models of Plant Photosynthetic response to CO₂ and PPF

Numerous models have been fitted to net photosynthesis data, but the two most frequently used are the rectangular hyperbola and the exponential model. A general form of the rectangular hyperbola equation as suggested in Iqbal et al (1996) is:

$$P_n = \frac{aIP_{g_{\text{max}}}}{aI + P_{g_{\text{max}}}} + R_d$$
[1]

Where P_n = net photosynthetic rate, I = photon flux density, a = the initial slope of the Pn-I curve, P_{gmax} = the maximum gross photosynthesis as I $\rightarrow \infty$, and Rd = the dark respiration rate which is negative.

The form of the exponential model proposed by a number of authors and reviewed in Iqbal et al (1996) is:

$$P = P_{n_{\max}} \left[1 - e^{-\left(\frac{aI}{P_{\max}}\right)} \right]$$
 [2]

Where P is gross photosynthesis, P_{nmax} is maximum net photosynthesis, P_{max} is maximum photosynthesis, I is photon flux density and a is the initial slope of the Pn-I curve or photosynthetic efficiency. This model passes through the origin and hence P = Pg. Modified versions of the model have accounted for dark respiration and do not pass through the origin. Both model forms can apply to the Pn-I response curve and re-parameterization will also allow for their application to modelling Pn-CO₂ responses. A knowledge of crop specific PPF and CO₂ compensation and saturation points (i.e. P_{nmax}) will do much to improve the predictability of yield response.

5.0 - References

Acock, B., Reddy, V.R., Hodges, H.F., Baker, D.N., McKinion, J.M., 1985. Photosynthetic response of soybean canopies to full-season carbon dioxide enrichment, *Agronomy J.*, 77:942-947.

Acock, M.C., Acock, B., 1995. Photoperiod sensitivity during soybean flower development, *Biotronics*, 24:25-34.

Azmi, A.R., Ormrod, D.P., 1971. Rates of net carbon dioxide assimilation in rice as influenced by growth temperature and photoperiod, *Agronomy J.*, 63:543-546.

Baker, J.T., Allen, L.H., Boote, K.J., 1990. Growth and yield responses of rice to carbon dioxide concentration, J. Agr. Sci. 115:313-320.

Baker, D.N., Musgrave, R.B., 1964. Photosynthesis under field conditions. V. Further plant chamber studies on the effects of light on corn (Zea mays L.), Crop Sci, 4:127-131.

Biemond, H., Vos, J., Struik, P.C., 1996. Effects of nitrogen n accumulation and partitioning of dry matter and nitrogen of vegetables. III: Spinach, *Netherlands Journal of Agricultural Science*, 44(3):227-239.

Boese, S.R., Huner, N.P.A., 1990. Effect of growth temperature and temperature shifts on spinach leaf morphology and photosynthesis, *Plant Physiology*, 94(4):1830-1836.

Boivin, C., Gosselin, A., Trudel, M.J., 1987. Effect of supplementary lighting on transplant growth and yield of greenhouse tomato, *HortScience*, 22(6):1266-1268.

Both, A.J., Leed, A.R., Goto, E., Albright, L.D., Langhans, R.W., 1996. Greenhouse spinach production in a NFT system, Acta Hort., 440:187-192.

Bugbee, B.G., Salisbury, F.B., 1988. Exploring the limits of crop productivity I: Photosynthetic efficiency of wheat in high irradiance environments, *Plant Physiol.*, 88:869-878.

Campbell, W.J., Allen, L.H., Bowes, G., 1990. Response of soybean canopy photosynthesis to CO₂ concentration, light and temperature, *J. Exp. Bot.* 41(225):427-433.

Cary, J.W., 1986. Effects of relative humidity, oxygen and carbon dioxide on initiation and early development of stolons and tubers, *Amer. Potato. J.* 63:619-627.

Cloutier, G.R., Dixon, M.A. 1998. Cultural Management Strategies for Crops in the MELiSSA Menu, MELiSSA Technical Note 40.1, Contract ECT/FG/MMM/97.012.

Cooper, R.L., Brun, W.A., 1967. Response of soybeans to a carbon dioxide-enriched atmosphere, *Crop Sci.*, 7:455-457.

Cox, E.F., McKee, J.M.T., Dearman, A.S., 1976. The effect of growth rate on tipburn occurrence in lettuce. J. Hort. Sci. 51:297-309.

Craker, L.E., Seibert, M., 1983. Light and the development of Grand Rapids Lettuce, Can. J. Plant Sci., 63:277-281.

De Koning, A.N.M., De Knoning, A.N.M., 1989. Development and growth of a commercially grown tomato crop, *Acta Hort.*, 260:267-273.

Dixon, M.A., B. Grodzinski, R. Cote and M. Stasiak, 1997. Sealed environment chamber for canopy light Interception and trace hydrocarbon analyses, *Advances in Space Research*, In press.

Du Cloux, H.C., Andre, M., Daguenet, A., Massimino, J., 1987. Wheat responses to CO_2 enrichment: Growth and CO_2 exchanges at two plant densities, *J. Exp. Bot.*, 38(194):1421-1431.

Egli, D.B., Pendleton, J.W., Peters, D.B., 1970. Photosynthetic rate of three soybean communities as related to carbon dioxide levels and solar radiation, *Agronomy J.*, 62:411-414.

Evans, J.R., Terashima, I., 1988. Photosynthetic characteristics of spinach leaves grown with different nitrogen treatments, *Plant and Cell Physiology*, 29(1):157-165.

Gaudreau, L., Charbonneau, J., Vezina, L., Gosselin, A., 1994. Photoperiod and photosynthetic photon flux influence growth and quality of greenhouse-grown lettuce, *HortScience* 29(11):1285-1289.

Gent, M.P.N., 1988. Effect of diurnal temperature variation on early yield and fruit size of greenhouse tomato, *Applied Agricultural Research*, 3(5):257-263.

Gifford, R.M., 1977. Growth pattern, carbon dioxide exchange and dry weight distribution in wheat growing under differeing photosynthetic environments, *Aust. J. Plant Physiol.*, 4:99-110.

Glenn, E.P., Cardan, P., Thompson, T.L., 1984. Seasonal effects of shading on growth of greenhouse lettuce and spinach, *Scientia Horticulturae*, 24:231-239.

Gosselin, A., Trudel, M.J., 1983. Interactions between air and root temperatures on greenhouse tomato: I. Growth, development and yield, J. Amer. Sco. Hort. Sci., 108(6):901-905.

Ikeda, A., Nakayama, S., Kitaya, Y., Yabuki, K., 1988. Effects of photoperiod, CO₂ concentration, and light intensity on growth and net photosynthetic rates of lettuce and turnip, *Acta Hort.*, 229: 273-277.

Ikeda, H., Wada, T., Mirin, T., Okabe, K., Tazuke, A., Furukawa, H., 1995. Year round production of spinach by NFT and DFT in the greenhouse, *Acta Hort.*, 396:257-264.

Iqbal, R.M., ur-Rehman, A., R., Rasul, E., Wahid, A., 1996. Mathematical models and response functions in phtosynthesis: and exponential model, in *Handbook of Photosynthesis*, Pessaraki, M., ed., Marcel Dekker, Inc., New York, pp 803-810.

Kanaan, S.S., Economakis, C.D., 1992. Effect of climatic conditions and time of harvest on growth and tissue nitrate content of lettuce in nutrient film culture, *Acta Hort.*, 323: 75-80.

Kawashima, N., Kurozumi, T., 1990. Studies of CO_2 enrichment in a greenhouse II: The effect on growth of leaf vegetables, *Bulletin of the Nara Agricultural Experiment Station*, 21:15-23. (Abstract).

Knect, G.N., O'Leary, J.W., 1983. The influence of carbon dioxide on growth, pigment, protein, carbohydrate and mineral status of lettuce. J. Plant Nutr., 6:301-12.

Knight, S.L., Mitchell, C.A. 1988. Effects of CO_2 and Photosynthetic Photon Flux on Yield, Gas Exchange and Growth Rate of *Lactuca sativa* L. 'Waldmann's Green', *J. Exp. Bot.*, 39(200):317-328.

Knight, S.L., Mitchell, C.A. 1983. Enhancement of lettuce yield by manipulation of light and nitrogen nutrition, J. Amer. Soc. Hort. Sci., 108(50): 750-754.

Koontz, H.V., Prince, R.P. 1986. Effect of 16 and 24 hours daily radidation (light) on lettuce growth, *HortScience*, 21(1):123-124.

Kozai, T., Kitaya, Y., Oh, Y.S., Kano, A., 1995. Microwave-powered lamps as a high intensity light source for plant growth, *Acta Hort.*, 399:107-112.

Lawlor, D.W., Boyle, F.A., Keys, A.J., Kendale, A.C., Young, A.T., 1988. Nitrate nutrition and temperature effects on wheat: A synthesis of plant growth and nitrogen uptake in relation to metabolic and physiological processes, *J. Exp. Bot.*, 39(200):372-343.

McAvoy, R.J., Janes, H.W., Godfriaux, B.L., Secks, M., Duchai, D., Wittman, W.K., 1989. The effect of total available photosynthetic photon flux on single truss tomato growth and production, *J. Hort. Sci.*, 64(3):331-338.

McKeehen, J.D., C.A. Mitchell, R.M. Wheeler, B. Bugbee and S.S. Nielsen, 1996. Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat and potato, *Advances in Space Research*, 18: 73-83.

Martinez, V., Cerda, A., Caro, M., Fernandez, F.G., 1984. Tomato growth under various regimes of sulphate and nitrogen, *Vith International Colloquium for the Optimization of Plant Nutrition*, 2:381-388. Montpellier, France.

Midmore, D.J., Prange, R.K., 1992. Growth responses of two Solanum species to contrasting

temperatures and irradiance levels: relations to photosynthesis, dark respiration and chlorophyll fluoresence, *Annals of Botany*, 69: 13-20.

Moot, D.J., Henderseon, A.L., Porter, J.R., Semenov, M.A., 1996. Temperature, CO_2 and the growth and development of wheat: Changes in the mean and variability of growing conditions, *Climatic Change*, 33:351-368.

Ortiz-Ferrara, G., Mosaad, M.G., Mahalakshmi, V., Fischer, R.A., 1995. Photoperiod and vernalization response of wheat under controlled environment and field conditions, *Plant Breeding*, 114:505-509.

Papadopoulos, A.P., Tiessen, H., 1983. Root and air temperature effects on the flowering and yield of tomato, J. Amer. Soc. Hort. Sci., 108(5):805-809.

Pardossi, A., Tognoni, F., Bertero, G., 1987. The influence of nutrient solution concentration on growth, mineral uptake and yield of tomato plants grown in NFT, *Advances in Horticultural Science*, 1(2):55-60.

Pfeufer, B., Krug, H., 1984. Effects of high CO₂ concentrations on vegetables, Acta Hort., 162:37-44.

Poughon, L., 1997. Including a Higher Plants Chamber in the MELiSSA loop. Description of an HPC for MELiSSA loop steady state simulations, MELiSSA Technical Note 32.3, Contract ECT/FG/CB/95.205.

Rowland-Bamford, A.J., Baker, J.T., Allen, L.H., Bowes, G., 1991. Acclimation of rice to changing atmospheric carbon dioxide concentration, *Plant Cell and Env.*, 14(6):577-583.

Rowland-Bamford, A.J., Allen, L.H., Baker, J.T., Boote, K.J., 1990. Carbon dioxide effects on carbohydrate status and partitioning in rice, J. Exp. Bot., 41(233):1601-1608.

Sionit, N., Strain, B.R., Flint, E.P., 1987. Interaction of temperature and CO_2 enrichment on soybean: Photosynthesis and seed yield, *Can J. Plant Sci.*, 67:629-636.

Sugiyama, S., 1990. The effects of short and long days on growth of spinach, Agriculture and Horticulture, 65(3):403-408.

Tibbitts, T.W., Rao, R.R., 1968. Light intensity and duration in the development of lettuce tipburn, *Proc. Amer. Soc. Hort. Sci.* 93:454-461.

Tibitts, T.W., Bottenberg, G., 1976. Growth of lettuce under controlled humidity levels, J. Amer. Soc. Hort. Sci., 101(1):70-73.

Tremblay, N., Trudel, M.J., Gosselin, A., 1984. Influence of supplementary lighting (HPS) on yield

and mineral nutrition of tomato plants grown in hydroponic culture, *Proceedings of the* 6^{th} *International Symposium on Soilless Culture*, Lunteren, 697-703. Wageningen, Netherlands, International Society of Soilless Culture.

Tripp, K.E., Peet, M.M., Pharr, D.M., Willits, D.H., Nelson, P.V., 1991. CO_2 enhanced yield and foliar deformation among tomato genotypes in elevated CO_2 environments, *Plant Physiology*, 96(3):713-719.

Vezina, F., Trudel, M.J., Gosselin, A., 1991. Influence of various supplemental lighting treatments on the productivity and physiology of greenhouse tomato, *Can. J. Plant Sci.*, 73(3):923-932.

Volk, G.M., Mitchell, C.A., 1995. Photoperiod shift effects on yield characteristics of rice, *Crop Sci.*, 35:1631-1635.

Wheeler, R.M., Tibbitts, T.W., Fitzpatrick, A.H., 1991. Carbon dioxide effects on potato growth under different photoperiods and irradidance, *Crop Sci.*, 31(5):1209-1213.

Wheeler, R.M., Mackowiak, C.L., Siegriest, L.M., Sager, J.C., 1993. Supraoptimal carbon dioxide effects on growth of soybean [*Glycine max L. Merr.*], *J. Plant Physiol.*, 142:173-178.

Wheeler, R.M., Corey, K.A., Sager, J.C., Knott, W.M., 1993. Gas exchange characteristics of wheat stands grown in a closed controlled environment, *Crop Sci.*, 33(1):161-168.

Wheeler, R.M., Mackowiak, C.L., Sager, J.C., Yorio, N.C., Knott, W.M., 1994a. Growth and gas exchange by lettuce stands in a closed, controlled environment, *J. Amer. Soc. Hort. Sci.*, 119(3):610-615.

Wheeler, R.M., Mackowiak, C.L., Sager, J.C., Knott, W.M., 1994b. Growth of soybean and potato at high CO₂ partial pressures, *Adv. Space Res.*, 14(11):251-255.

Wheeler, R.M., Tibbitts, T.W., 1997. Influences of changes in daylength and carbon dioxide on the growth of potato, *Annals of Botany*, 79:529-533.

Whitaker, T.W., Ryder, E.J., Rubatsky, V.E., Vail, P.V., 1974. Lettuce production in the United States, USDA HDBK 221.

Wilkerson G. G., Jones, J.W., Boote, K.J., Buol, G.S., 1989. Photoperiodically sensitive interval in time to flower of soybean, *Crop Sci.*, 29:721-726.

Willits, D.H., Peet, M.M., 1989. Predicting yield responses to different greenhouse CO₂ enrichment schemes: cucumbers and tomatoes, *Agircultural and Forest Meteorology*, 44(3-4):275-293.

Yelle, S., Beeson, R.C., Turdel, M.J., Gosselin, A., 1990. Duration of CO_2 enrichment influence growth, yield and gas exchange of two tomato species, *J. Amer. Soc. Hort. Sci.*, 115(1):52-57.