MELISSA

Memorandum of Understanding ECT/FG/MMM/97.012

CONTRACT ESA-ESTEC/ADERSA Purchase Order n° 171686 of 16.07.1997

TECHNICAL NOTE : 38.3

<u>Predictive control of the biomass production</u> <u>of the photoheterotrophic compartment.</u> <u>Simulator based on the new first principles model</u>

> Version : 1 Issue : 0

J.-J. LECLERCQ

November 1999

10, rue de la Croix Martre 91873 PALAISEAU Cedex Téléphone : +33 (0)1 60 13 53 53 Télécopie : +33 (0)1 69 20 05 63 E-Mail : adersa@adersa.asso.fr

Document Change Log

Version	Issue	Date	Observation
0	0	October 1999	Draft
1	0	November 1999	Original version

ESA-ESTEC	MELISSA - Technical note 38.3 "Predictive control of the biomass production of the photoheterotrophic compartment"			November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso	.fr	Page 2

TABLE OF CONTENTS

1. INTRODUCTION	5
2. CONTROL STRUCTURE	6
Level 1 control Level 2 control	6 7
3. DESCRIPTION OF THE LEVEL 1 CONTROL	
3.1. Internal model3.2 Static bias cancellation	
4. ROBUSTNESS STUDY	9
4.1 Tuning parameters	9
4.2 Simulation	9
5. CONCLUSION	
6. REFERENCES	

ANNEX 1 : Computation of the Manipulated Variable by a scenario strategy.
ANNEX 2 : Main characteristics of the first principles model.
ANNEX 3 : Computation method of the limits of the working illuminated volume .
ANNEX 4 : Expression of the mean volumetric growth rate. Adaptation to cylindrical reactor.
ANNEX 5 : Source file of the control software.

Abbreviations :

- GPS : Global Purpose Station
- MV : Manipulated Variable
- PFC : Predictive Functional Control
- PBR : PhotoBioReactor

<u>N.B.</u>: The notations are those of TN 45.1.

ESA-ESTEC	MELISSA - Technical note 38.3 "Predictive control of the biomass production of the photoheterotrophic compartment"			November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.f	ř.	Page 3

The inputs of the process are the light flux, F_0 , and the flow rate, Q, which is assumed to be identical to the level 1 flow rate set point, CQ1, at any moment.

The control is composed of 2 levels. The upper level, level 2, computes the level 1 production and flow rate set points, CProd1 and CQ1, in function of the respective level 2 set points, CP2 and CQ2, taking into account the maximum and minimum concentration constraints and the flow variation dq (± 10 % of CQ2). The lower level, level 1, computes the light energy flux, F₀, function of the set point CProd1 and taking into account the disturbance Q.

The code of the control is written with C language. It is designed in such a way that it can be moved from the simulator into the GPS structure (present or future) with the less possible modifications.

At the meeting ESA/LGCB/ADERSA on May 12^{th} 1999, it was decided to give an official name to a few software's :

name	software
LSPC	Light Spirulina Production Control
LRPC	Light Rhodobacter Production Control
SBQ	Spirulina Biomass Quality
MCS	Melissa Control Software
	(Level 2 of the hierarchical control)

So, according to this decision, the main function realizing the control of the Rhodobacter production by action on the light intensity is called now *lrpc* (source file in Annex 5).

2. CONTROL STRUCTURE

From the point of view of the biomass production control by action on light, the two photobioreactor with Spirulina and Rhodobacter are very similar. So the control structure is identical in the 2 cases. Furthermore, this attitude reduces maintenance costs.

Full details have been given in TN 24.1 about the levels 1 and 2 of the control. Here are a few recalls.

Level 1 control

This controller is built on the principles of PFC (Predictive Functional Control) :

- internal model;
- reference trajectory to specify the future closed loop behaviour ;
- manipulated variable structuration ;
- modelling error extrapolation.

ESA-ESTEC	"Predictive control of the bi	November 1999	
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53 Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.fr	Page 6

A scenario strategy is used to adapt the classical PFC control (which is convenient for linear process) to the present process which is highly non linear : an iterative input protocol is applied to the model from which a prediction of the model output is inferred (annex 1).

Level 2 control

This level checks the compatibility flow rate and production set points, fixed by the operator (or a upper level), with regard to variation flow rate and concentration constraints.

<u>Algorithm</u> : at each period of time, the following computations are made :

1 - maximum and minimum flow rate function of the level 2 flow rate set point cq2 :

 $q_{max} = cq2 (1+dq)$ $q_{min} = cq2 (1-dq)$

2 - maximum and minimum production function of the absolute constraints on C_{X} :

 $p_max = q_max *C_x_max$ $p_min = q_min *C_x_min$

3 - level 1 (or feasible) production set point :

 $cp1 = max [p_min, min (p-max, cp2]]$

4 - level 1 (or feasible) flow rate set point :

$$if\left(\frac{cp1}{C_{x} max} > cq2\right)$$
 then

$$cq1 = min \left(q_max, \frac{cp1}{C_x_max}\right)$$

else if
$$\left(\frac{cpl}{C_{x}-min} < cq2\right)$$
 then

$$cq1 = max\left(q_{min}, \frac{cp1}{C_{x_{min}}}\right)$$

else cq1 = cq2

ESA-ESTEC	MELISSA - Technical note 38.3 "Predictive control of the biomass production of the photoheterotrophic compartment"			November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso).fr	Page 7

Notations

- C_x Total biomass concentration (kg/m³ or g/l)
- \mathcal{E}_{J} Mean efficient intensity (W/m²)
- f₁ Illuminated surface fraction for the PBR (no dimension)
- F_0 Mean incident light flux (W/m²)
- H Coincidence horizon (expressed in number of sampling periods)
- I_{Σ} Mean local available radiant light energy (W/m²)
- K_1 Half saturation constant for kinetic law (W/m²)
- q Proportionality constant between illuminated and dark operative volumes (no dimension)
- R Radius of the cylindrical PBR (m)
- r_x Local volumetric biomass growth rate (kg/m³/h)
- $\langle r_x \rangle$ Mean volumetric biomass growth rate (kg/m³/h)
- t Time (h)
- V Total volume of the PBR (m³)
- V_2 Dark operative volume of the PBR (m³)
- V_3 Working illuminated volume of the PBR (m³)
- x Relative abscissa along the radius R (no dimension)
- $x'_3 x_3$ Peculiar values of x delimiting the volume V_3 ($x'_3 \le x_3$)
- μ_{M} Maximum specific growth rate (h⁻¹)
- λ Reference trajectory dynamic (no dimension)

Remark :

In the present TN, the relative radius, x, is the complementary to 1 of the optical thickness, Z, defined in TN45.1 :

x + Z = 1

ESA-ESTEC	MELISSA - Technical note 38.3 "Predictive control of the biomass production of the photoheterotrophic compartment"			November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.fr		Page 4

1. INTRODUCTION

Based on the new first principles model elaborated by J.F. Cornet of LGCB (in TN 45.1), a Predictive Functional Control is built for the compartment II (rhodospirillum rubrum photobioreactor) of the MELISSA loop.

The study is done on a Simulink® simulator (figure 1) before transplantation on the real process.

Figure 1 : Controlled compartment II

The process is defined by the following differential equation :

$$\frac{dC_{x_p}}{dt} = \left\langle r_{x_p} \right\rangle - \frac{Q_p}{V_p} \cdot C_{x_p}$$
(1)

with

The index p means that the variables are associated to the process.

This differential equation is integrated by the rk45 (Runge-Kutta fourth and fifth order formulas) of Matlab®.

ESA-ESTEC	MELISSA - Technical note 38.3 "Predictive control of the biomass production of the photoheterotrophic compartment"			November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53 Fax : (33) 1 69	20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.fr		Page 5

3. DESCRIPTION OF THE LEVEL 1 CONTROL

3.1. Internal model

Similarly to the simulated process, the internal model of the control is defined by the differential equation :

$$\frac{dC_x}{dt} = \langle r_x \rangle - \frac{Q}{V} \cdot C_x$$
(2)

with

 C_x : total biomass concentration

 $\left< r_{x} \right>$ $\,$: mean volumetric biomass growth rate

Q : flow rate

V : volume of the photobioreactor

This equation has to integrated on the coincidence horizon, H, of the PFC, i.e. from the current instant n to the instant n+H. As H is equal to a few sampling periods (typically, less than 10), the Euler method is quite convenient for the integration.

According to the first principles model, the mean volumetric biomass growth rate of the working illuminated volume V_3 , $\langle r_{x3} \rangle$, is :

$$\langle \mathbf{r}_{X3} \rangle = 2 \cdot \mu_{M} \cdot \mathbf{C}_{X} \cdot \mathbf{J}$$

$$\text{with } \mathbf{J} = \int_{Y3} \mathbf{g} \cdot \mathbf{dX}$$

$$Y_{3} = \begin{bmatrix} 0 & \mathbf{x}_{3}' \end{bmatrix} \cup \begin{bmatrix} \mathbf{x}_{3} & 1 \end{bmatrix}$$

$$\text{and } \mathbf{g} = \frac{\mathbf{I}_{\Sigma}}{\mathbf{K}_{J} + \mathbf{I}_{\Sigma}} \cdot \mathbf{X}$$

$$(3)$$

As it is shown in annex 2, the function g is monotonic on the integration interval. So J is computed by the trapezium method.

The computation of $\langle r_x \rangle$ involves the two characteristic volumes V2 and V3, V2 being the dark operative intermediate zone and V3 the working illuminated one. The computation of these volumes V2 and V3, defined in TN45.1 for rectangular photobioreactor, is adapted in the present control for cylindrical photobioreactor (annexes 3 and 4):

ESA-ESTEC	MELISSA - Technical note 38.3 "Predictive control of the biomass production of the photoheterotrophic compartment"			November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso	fr	Page 8

$$\langle \mathbf{r}_{\mathbf{x}} \rangle = \mathbf{k} \cdot \langle \mathbf{r}_{\mathbf{x}3} \rangle$$
 (4)

with k equal to the minimum of the 2 terms :

$$\left\{q, \frac{1}{1 + x'_3^2 - x_3^2}\right\}$$

where, by convention, a root x'_3 or x_3 , that does not exist, is set to 0.

3.2 Static bias cancellation

The method used to cancel the static bias attached to the present non linear PFC is identical to the one developed for the Spirulina photobioreactor and is detailed in TN38.2.

4. ROBUSTNESS STUDY

4.1 Tuning parameters

The tuning parameters are those of a classical PFC :

- H: the coincidence horizon,
- λ : the dynamic of the reference trajectory.

4.2 Simulation

Tests in simulation allow to check the control code and are the only way to evaluate the robustness of the control. In the following tests, the tuning parameters have the following values :

- dynamic of the reference trajectory : $\lambda = 0.90$;
- coincidence horizon : H = 5 control periods.

The control period is : dt = 0.5 hour.

The illuminated surface fraction, f_1 is set to 0.6 and the maximum specific growth rate, μ_M , is fixed to 0.15 h⁻¹ (case of acetate substrate).

All the tests have the same pattern :

ESA-ESTEC	"Predictive control of the b	November 1999	
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53 Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.fr	Page 9

- At the beginning of the simulation, the process works in steady state and the biomass production set point is equal to 0.18 g/h (this set point, which is supposed to be fixed by the operator or by the level 2 of the hierarchical control, is called set point -level2 in the figures);
- At time t = 10 h (simulated time), the set point is increased to 0.25 g/h, which is higher than the maximum production allowed by the flow rate (0.14 l/h) and the maximum biomass concentration (1.5 g/l). So the control computes the set point level1 : 0.231 g/h;
- Then at time 90 h, the set point is decreased to 0.18 g/h;
- All along the simulation, the level2 flow rate set point is fixed to 0.14 l/h (dilution = 0.02 h^{-1}).

Test 1 (figure 2) :

The internal model of the control matches the simulated process.

At the increasing set point (t = 10 h), the control moves the two actions :

- the light intensity (F_{0} ctrl) is set to its maximum constraint : 400 W/m². Due to this constraint, the dynamic is limited and the set point is reached in about 20 h;
- the water flow rate is set to its maximum value too : 0.154 l/h.

When the measured production reaches its set point (at about t = 30 h), the light intensity, F_{0} _ctrl, decreases smoothly to its steady state value (85 W/m²) and causes no overshoot of the set point.

At the decreasing set point (t = 90 h), the controller moves the 2 actions as previously :

- the light intensity (F_{0} _ctrl) is set to its minimum value : 10 W/m² and the dynamic of the closed loop is due to the dilution phenomenon. The set point is reached in 20 h;
- the water flow rate is set to its level 2 set point : 0.14 l/h.

When the measured production reaches its set point (at about 120 h), the light intensity, F_{0} _ctrl, increases smoothly to its steady state value (60 W/m²) and causes no overshoot of the set point.

The maximum constraint on the biomass concentration (set to 1.5 g/l in these tests) is quite respected.

Test 2 (figure 3) :

The internal model of the control does not match the simulated process : the light intensity received by the process is assumed to be 50 W/m² lower than the action F_{0} _ctrl computed by the control.

In that case, the behaviour of the closed loop system is nearly unchanged, except that the transient duration of the increasing step is a little bit longer (30 h instead of 20 h).

ESA-ESTEC	"Predictive control of the	November 1999	
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53 Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.fr	Page 10

Test 3 (figure 4) :

Another mismatch is simulated : the illuminated surface fraction of the process, $f_{\rm L}$ process, is supposed to be 75 % of the illuminated surface fraction of the internal model, $f_{\rm L}$ ctrl. In comparison with the matched control, this is equivalent to a decreasing of 25 % of the biomass growth rate.

In that case too, globally the behaviour of the closed loop system is similar to the one of the matched control, except that the transient duration of the first step is longer (55 h instead of 20 h) due to the reduced biomass growth rate of the simulated process. In that case of mismatch, the dilution phenomenon is not affected; so the transient behaviour of second step is unchanged.

Test 4 (figure 5) :

This test is a simulation of bad calibration of a sensor : the flow rate of the process is assumed to be 80 % of the flow rate measured and given as input data of the internal model.

In that case too, globally the behaviour of the closed loop system is identical to the one of the matched control, except that the transient duration of the first step is a little bit shorter (because of overestimation of the production) and that the one of the last step is longer (because of a smaller dilution).

Test 5 (figure 6) :

In this test, the biomass concentration of the process is assumed to be 80 % of the measured biomass concentration.

In that case too, globally the behaviour of the closed loop system is identical to the one of the matched control.

Conclusion of these tests :

The robustness of the control is quite correct : it is able to counter all the tested mismatches without oscillations nor overshoot.

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38.3 "Predictive control of the biomass production of the photoheterotrophic compartment"		
ADERSA	10, rue de la Croix Martre 91873 PALAISEAU Cedex	Tel : (33) 1 60 13 53 53 E-Mail : adersa@adersa.asso.fi	Fax : (33) 1 69 20 05 63	Réf. : 2100 Page 11

Production : measure and set point -level2 (-.) -level1 (--)

Figure 2 : Matched control

ESA-ESTEC	"Predictive control of the b	November 1999	
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53 Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.fr	Page 12

Figure 3 : Mismatched control : F_{0} process = F_{0} ctrl - 50

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38.3 "Predictive control of the biomass production of the photoheterotrophic compartment"		
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53 Fax : (33) 1 69 20 05 63	Réf. : 2100	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.fr	Page 13	

Figure 4 : Mismatched control : f_{1_process} = f_{1_ctrl} * 0.75

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38.3 niomass production of the photoheterotrophic compartment"	November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53 Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.fr	Page 14

Figure 5 : Mismatched control : flow_process = flow_measure * 0.8

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38.3 "Predictive control of the biomass production of the photoheterotrophic compartment"		
ADERSA	10, rue de la Croix Martre 91873 PALAISEAU Cedex	Tel : (33) 1 60 13 53 53 Fa E-Mail : adersa@adersa.asso.fr	ix : (33) 1 69 20 05 63	Réf. : 2100 Page 15

Production : measure and set point -level2 (-.) -level1 (--)

Figure 6 : Mismatched control : CX_process = CX_measure * 0.8

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38.3 iomass production of the photoh	eterotrophic compartment"	November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.f	ř	Page 16

5. CONCLUSION

The control is tuned in simulation with the following control parameters :

- dynamic of the reference trajectory : $\lambda = 0.90$;
- coincidence horizon : H = 5 control periods;

and with the maximum specific growth rate specific to the acetate substrate.

This last parameter of the first principles model is an input argument of the control software *lrpc* and can be modified by the control's user according to the substrate.

Its robustness is quite satisfactory.

Apart from this control study (in annex A2), it can be noted that :

• when C_x goes down 0.4 g/l, the mean growth rate $\langle r_x \rangle$ decreases quickly;

• when C_x goes over about 3.0 g/l, $\langle r_x \rangle$ becomes constant (all the incident energy is consumed by the biomass);

• beyond 200 W/m², the increasing of $\langle r_{x} \rangle_{max}$ with F_{0} is expensive in terms of energy

: a 20 % increase of $\langle \mathbf{r}_{\mathbf{x}} \rangle_{\text{max}}$ needs a 100 % increase of \mathbf{F}_{0} .

So, on a real reactor, the practical domain of C_x should be :

$$C_{\rm X} \in [0.4 \ 3.0] \text{ g/l}$$

and the practical domain of F_0 should be :

 $F_0 \quad \in \quad \begin{bmatrix} 10 & 200 \end{bmatrix} \quad W/m^2$

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38.3 iomass production of the photohe	terotrophic compartment"	November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.fr		Page 17

6. REFERENCES

CORNET J.F., DUSSAP C.G., GROS J.B. "Modelling of physical limitations in photobioreactors. Adaptation of the light energy transfer model to cylindrical geometry" ESA contract PRF 130820, 1993, TN 19.1.

CORNET J.F., DUSSAP C.G., GROS J.B. "Kinetic modelling of Rhodospirillum Rubrum growth in rectangular photobioreactor" ESA contract 12923/98/NL/MV, April 1999, TN 45.1.

FULGET N. "MELISSA. Study for the non linear Model Based Predictive Control of Spirulina comportment using knowledge model". ESA contact PRF 142356. February 1995. Technical Note 24.1.

LECLERCQ J.J. "MELISSA. Predictive control of biomass production in the Rhodobacter compartment". ESA contract PO n° 151491 of 10/05/95. August 1996. TN 28.1.

LECLERCQ J.J. "MELISSA. Final validation of the production control of the 7 litres photoautotrophic compartment". ESA contract PO nº 171686 of 16/07/97. May 1998. TN 38.2.

RICHALET J. 1993. Pratique de la Commande Prédictive. HERMES Edition.

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38.3 iomass production of the photohet	erotrophic compartment''	November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.fr		Page 18

ANNEX 1

Computation of the manipulated variable by a scenario strategy

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38 iomass production of the photol	3 heterotrophic compartment"	November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	Réf. : 2100
L	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.	fr	Page 19

1 - Principle of the method

- n : current instant
- H : coincidence horizon
- s_r : reference trajectory
- s_m : model output

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38.3 "Predictive control of the biomass production of the photoheterotrophic compartment"		
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53 Fax : (33) 1 69 20 05 6.	3 Réf. : 2100	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.fr	Page 20	

The method is based on the PFC principles applied to a non linear process.

The reference trajectory is a first order trajectory starting at $s_p(n)$ and rallying the set point c(n) assumed constant in the future :

$$s_r(n+H) = \alpha^H \cdot s_p(n) + (1 - \alpha^H) \cdot c(n)$$
 (A1.1)

with $\alpha = e^{-\frac{T}{\tau}}$ $\tau = time \text{ constant of the first order}$

At each instant n, the manipulated variable, u(n), is computed such that, when it is assumed constant on the coincidence horizon (from n to n+H):

$$s_p(n+H) = s_r(n+H)$$
(A1.2)

The estimation of the output process is done by means of the first principles model :

$$s_p(n+H) = s_m(n+H) \tag{A1.3}$$

So, from these 3 relations, the model output at n+H is deduced :

$$s_{m}(n+H) = \alpha^{H} \cdot s_{p}(n) + (1 - \alpha^{H}) \cdot c(n)$$
 (A1.4)

All the variables of the right hand side term of (A1.4) are known and the problem, now, is to express the relation between u(n) and $s_n(n+H)$.

As this expression is not easy, the value of the MV, u(n), is approached by means of an iterative computation.

2 - Iterative computation of the MV

It is based on the fact that s_{ui} is a monotonic ascending function of u when the disturbance d is constant :

$$s_m = f(u)$$
 (A1.5)
with f monotonic

Given u_0 , the value of u at previous instant n-1 (u_0 exists always even at the initialization of the control) and δu , an appropriate signed variation of u, constant and not null.

The first step of the iterative loop is the computation of s_{m1} and s_{m2} , values of s_m at instant n+H for 2 values of the manipulated variable, u_0 and $u_0 + \delta u$:

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38.3 iomass production of the photoheterotrophic compartment"	November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53 Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.fr	Page 21

$$s_{m1} = f(u_0)$$

$$s_{m2} = f(u_0 + \delta u)$$

Then, an approached value, u', is computed by the linear relation :

$$\frac{u' - u_0}{\delta u} = \frac{s_m(n+H) - s_{m1}}{s_{m2} - s_{m1}}$$
(A1.6)

If the relative distance between the approached solution and the target :

$$\delta y = \frac{f(u') - s_m(n+H)}{s_m(n+H)}$$
(A1.7)

is small enough, the iterative loop is stopped ; otherwise another loop is begun again.

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38.3 iomass production of the photohe	eterotrophic compartment''	November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.fr		Page 22

ANNEX 2

Main characteristics of the first principles model

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38.3 iomass production of the photoheterotrophic compartment"	November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53 Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.fr	Page 23

1 - Recall of the model

According to the first principles model built by J.F. Cornet for cylindrical and radially illuminated photobioreactors, the expression of the mean local available radiant light energy, I_{Σ} , is :

$$I_{\Sigma} = F_0 \cdot \frac{R}{r} \cdot \frac{2 \operatorname{ch} \left[\delta \cdot \frac{r}{R} \right]}{\operatorname{ch} \delta + \alpha \cdot \operatorname{sh} \delta}$$
(A2.1)

with :

- R : radius of the photobioreactor
- r : locates the local cylindrical surface at distance r from the axis of the photobioreactor
- F_0 : mean incident light flux
- α and δ : defined in TN 45.1

According to this model too, the local growth rate, in the working illuminated volume V_3 , is :

$$r_{x_3} = \mu_M \cdot C_x \cdot \frac{I_{\Sigma}}{K_J + I_{\Sigma}}$$
 (A2.2)

and the mean volumetric growth rate is :

$$\langle \mathbf{r}_{X3} \rangle = \frac{1}{V} \cdot \int_{V3} \mathbf{r}_{X3} \cdot dV$$
 (A2.3)

Given the relative abscissa $x = \frac{r}{R}$,

the relation (A2.3) becomes :

$$\langle \mathbf{r}_{X3} \rangle = 2 \cdot \boldsymbol{\mu}_{\mathsf{M}} \cdot \mathbf{C}_{X} \cdot \mathbf{J}$$
 (A2.4)

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38 biomass production of the photo	.3 heterotrophic compartment''	November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso	.fr	Page 24

with
$$J = \int_{Y_3} g \cdot dx$$
 $Y_3 = \begin{bmatrix} 0 & x'_3 \end{bmatrix} \cup \begin{bmatrix} x_3 & 1 \end{bmatrix}$
and $g = \frac{I_{\Sigma}}{K_J + I_{\Sigma}} \cdot x$

2 - Study of the function g

The derivative of g versus x is :

$$\dot{g} = \frac{N}{D}$$

with :

 $D = (K_{J} + I)^{2} > 0$ $N = K_{J} \cdot \dot{I} \cdot x + K_{J} \cdot I + I^{2}$

Now given $y = I \cdot x$

its derivative is $\dot{y} = \dot{I} x + I$

then
$$N = K_J \cdot \dot{y} + I^2$$

Now
$$y = \frac{2 \cdot F_0}{\operatorname{ch} \delta + \alpha \operatorname{sh} \delta} \cdot \operatorname{ch}(\delta x)$$

then \dot{y} is positive as $ch(\delta x)$ is ascending on $[0 + \infty[$.

Therefore \dot{g} is positive and g is monotonic ascending on $[0 \ 1]$.

Noticing that, when x tends to 0, I_{Σ} and g tend to $+\infty$ and 0, respectively, the typical aspect of g is plotted in figure A2.1.

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38 iomass production of the photol	3 heterotrophic compartment''	November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail: adersa@adersa.asso.	fr	Page 25

Figure A2.1 : General aspect of g on [0 1]

3 - Illustrations of $\textbf{I}_{\Sigma}~~ \text{and}~ \textbf{g}$

In order to illustrate the aspects of I_{Σ} and g, 4 examples are given in which the incident light flux, F_0 , is increasing from 10 to 400 W/m² while the biomass concentration, C_x , is decreasing from 2 to 0,1 kg/m³ (table A2.1).

Example	$F_0 (W/m^2)$	$C_x (kg/m^3)$
1	10	2
2	100	0.67
3	200	0.28
4	400	0.1

|--|

These illustrations are plotted in the figure A2.2 on 2 columns of graphs : the I_{Σ} curves are plotted in the left hand side one and the g curves in the right hand side one.

Each row of graphs is associated to one of the 4 examples (example 1 to example 4, from top to bottom).

The 2 roots, x'_3 and x_3 , of

 $I_{\Sigma} = \mathcal{E}_{J}$

are given into brackets : $[x'_3 \quad x_3]$ (with $x'_3 \le x_3$) in the graphs of the function I_{Σ} . When a root does not exist, it is replaced by 0.

The values of J and r_{x3} are also given in the right hand side graphs.

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38 iomass production of the photo	.3 heterotrophic compartment"	November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso	fr	Page 26

They illustrate that g is monotonic increasing on [0 1], as previously demonstrated.

Figure A2.2 : Illustrations of I_{Σ} and g

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38.3 iomass production of the photoh	eterotrophic compartment''	November 1999
ADERSA	10, rue de la Croix Martre 91873 PALAISEAU Cedex	Tel : (33) 1 60 13 53 53 E-Mail : adersa@adersa.asso.f	Fax : (33) 1 69 20 05 63	Réf. : 2100

4 - Domains of F_0 and C_x

The figure A2.3 gathers the variation of J and $\langle r_x \rangle$ in function of C_x for a few values of F_0 : the J curves are plotted in the left hand side column and the $\langle r_x \rangle$ curves in the right hand side one.

The variation of the maximum of $\langle r_x \rangle$ versus F_0 is plotted in figure A2.3.

This short numerical study shows that :

• when C_x goes down 0.4 g/l, the mean growth rate $\langle r_x \rangle$ decreases quickly;

• when C_x goes over about 3.0 g/l, $\langle r_x \rangle$ becomes constant (all the incident energy is consumed by the biomass);

• beyond 200 W/m², the increasing of $\langle r_x \rangle_{max}$ with F_0 is expensive in terms of energy : a 20 % increase of $\langle r_x \rangle_{max}$ needs a 100 % increase of F_0 .

So, on a real reactor, the practical domain of C_x should be :

$$C_{X} \in [0.4 \ 3.0] \quad g/l \tag{A2.5}$$

and the practical domain of F_0 should be :

$$F_0 \in [10 \ 200] \ W/m^2$$
 (A2.6)

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38.3 iomass production of the photoh	B acterotrophic compartment"	November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	Réf. : 2100
L	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.f	ĥ	Page 28

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38.3 iomass production of the photoh	s neterotrophic compartment''	November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.f	ř	Page 29

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38.3 iomass production of the photohe	terotrophic compartment"	November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax : (33) 1 69 20 05 63	Réf. : 2100
L	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.fr		Page 30

ANNEX 3

Computation method of the limits x'₃ and x₃ of the working illuminated volume

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38 iomass production of the photol	3 heterotrophic compartment''	November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.	fr	Page 31

From the data processing point of view, it is common to associate, in one hand, the determination of x_3 and, in the other hand, the integration of g by the trapezium method : these 2 operations can be stated in a single iterative loop and in a very simple way.

The only problem is to determine the number of intervals which gives a good precision on $\langle r_{x3} \rangle$. From (A2.4), the relative error on $\langle r_{x3} \rangle$ is the same as on J.

1 - Relative error on J

The accuracy on the relative abscissa x_3 , delimiting the outer part of the working illuminated volume, depends directly on the number of integration steps.

Given x_0 the exact value of x_3 so that :

 $I_{\Sigma}(x_0) = \mathcal{E}_{J}$ (mean efficient intensity)

Given x_n and x_{n+1} , the values of x at steps n and n+1, around x_0 (figure A3.1) such that $I_{\Sigma}(x_n) \leq \mathcal{E}_J$ and $I_{\Sigma}(x_{n+1}) > \mathcal{E}_J$

Figure A3.1 : Function g around x₃

As \mathcal{E}_{J} is negligible in comparison with K_{J} :

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38 iomass production of the photo	.3 oheterotrophic compartment"	November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso).fr	Page 32

$$g(x_0) \simeq \frac{\mathcal{E}_J}{K_J} x_0$$

Given: $J_e = \int_{x_0}^{l} g \cdot dx$ (exact value) and $J_a = \int_{x_{n+1}}^{l} g \cdot dx$ (approximate value)

The absolute error on J is :

$$\Delta J = J_e - J_a = \int_{x_0}^{x_{n+1}} g \cdot dx$$

$$\Rightarrow \Delta J \simeq \frac{\mathcal{E}_J}{K_J} \cdot x_0 (x_{n+1} - x_0) \qquad (A3.1)$$

Given n_i the number of integration steps.

Now
$$x_0 \le 1$$
 and $x_{n+1} - x_0 < \frac{1}{n_i}$
Then $\Delta J < \frac{\mathcal{E}_J}{K_J \cdot n_i}$ (A3.2)

Assuming that the same error is done with the other relative abscissa, x'_3 , if any, the total absolute error on J is :

$$\Delta \mathbf{J} < \frac{2 \cdot \varepsilon_{\mathbf{J}}}{\mathbf{K}_{\mathbf{J}} \cdot \mathbf{n}_{\mathbf{i}}} \tag{A3.3}$$

So, the absolute error on J, ΔJ , is maximized by a constant term depending on n_i :

$$A = \frac{2 \cdot \mathcal{E}_{J}}{K_{J} \cdot n_{i}}$$

Assuming true the relations (A2.5) and (A2.6) : $C_{X} \in \begin{bmatrix} 0.4 & 3.0 \end{bmatrix} \quad g/l$

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38.3 "Predictive control of the biomass production of the photoheterotrophic compartment"			
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax : (33) 1 69 20 05 63	Réf. : 2100	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.fr		Page 33	

 $F_0 \in [10 \ 200] \text{ W/m}^2$

the minimum value of J is about 10^{-2} (top left graph of figure A2.3) and the relative error on J is maximized in the table A3.1.

n _i	A	max relative error on J
100	1.3 10-5	10-3
1000	1.3 10-6	10-4

(A3.4)

2 - Number of integration steps

As a relative error on J equal to 10^{-3} is quite convenient, the number of integration steps n_i is set to :

$$n_{i} = 100$$

ESA-ESTEC	MELISSA - Technical note 38.3 "Predictive control of the biomass production of the photoheterotrophic compartment"			November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso	.fr	Page 34

ANNEX 4

Expression of the mean volumetric growth rate Adaptation to cylindrical reactor

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38.3 iomass production of the photoheterotrophic c	ompartment''	November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53 Fax : (33) 1	69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.fr		Page 35

From the following equations (6) and (9) of TN 45.1 :

$$\langle \mathbf{r}_{\mathbf{X}} \rangle = \frac{1}{\mathbf{V}} \left[\int_{\mathbf{V}_2} \mathbf{r}_{\mathbf{X}2} \cdot d\mathbf{V} + \int_{\mathbf{V}_3} \mathbf{r}_{\mathbf{X}3} \cdot d\mathbf{V} \right]$$
 (6 of TN 45.1)

$$\frac{1}{V_{2}} \int_{V_{2}} r_{X2} \cdot dV = \frac{1}{V_{3}} \int_{V_{3}} r_{X3} \cdot dV \qquad (9 \text{ of TN } 45.1)$$

it comes :

$$\langle \mathbf{r}_{\mathbf{x}} \rangle = \mathbf{k} \cdot \langle \mathbf{r}_{\mathbf{x}3} \rangle$$
 (A4.1)

with :

$$k = \frac{V_2 + V_3}{V_3}$$

In the TN 45.1, where the reactor is rectangular with an infinite length L, the volume V_2 exists and :

$$k = q = 3.2 \pm 0.2$$

In the case of a finite cylindrical reactor, when V_2 exists, the sum of V_2 and V_3 is limited to the total volume V :

$$V_2 + V_3 \leq V$$

and k is limited by the relation :

$$k \leq \frac{1}{1 + x_{3}^{2} - x_{3}^{2}}$$
(A4.2)

where x'_3 and x_3 are the relative abscissa along the radius of the reactor delimiting the working illuminated volume V₃ defined in TN 45.1.

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38.3 iomass production of the photohe	terotrophic compartment"	November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	Réf. : 2100
İ	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.fr		Page 36

So the expression of r_x , adapted to the cylindrical reactor, is :

$$\langle \mathbf{r}_{\mathbf{X}} \rangle = \mathbf{k} \cdot \langle \mathbf{r}_{\mathbf{X}3} \rangle$$
 (A4.3)

with k equal to the minimum of the 2 terms :

$$\left\{q, \frac{1}{1 + x'_{3}^{2} - x_{3}^{2}}\right\}$$

where, by convention, a root x'_3 or x_3 , that does not exist, is set to 0.

Remark :

When the equation :

$$I_{\Sigma} = \mathcal{E}_{J}$$

has no root x'_3 nor x_3 ,

then

$$V_3 = V$$
 and V_2 does not exist.

So
$$k = \frac{V_2 + V_3}{V_3}$$
 is equal to 1

as obtained from $\frac{1}{1 + x'_3^2 - x_3^2}$ where x'₃ and x₃ are null.

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38.3 iomass production of the photohe	terotrophic compartment"	November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.fr		Page 37

ANNEX 5

Source file of the control : lrpc.c

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38 iomass production of the photol	3 neterotrophic compartment''	November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.t	fr	Page 38

```
/*
   LRPC.C
             Light Rhodobacter Production Control
   Version 1.0
   AUTHOR : LECLERCO JJ (ADERSA)
   October 1999
                             Function:
      Non linear PFC control of Rhodobacter production by light
   Synopsis:
      LRPC (PROD SP2, CX, QE SP2, F0, QE MES, SM SUP, CONS SUP,
           VOL, FI, MUM, DT, LAMBDA, INIT, VAR OUT, TRACE)
      (v) : numerical value
      (p) : pointer
      PROD SP2 (v):level2 production set point (g/h)
               (v): biomass concentration (q/1)
      CX
      QE SP2
               (v):level2 flow rate set point (l/h)
      F0
               (p):light intensity : measured or computed by the control (W/m2)
                   . input argument : measured value of F0
                   . output argument : computed by the control
      QE MES
               (v):measure of flow rate (1/h)
               (p):production model output computed by the supervisor (g/h)
      SM SUP
                   . input argument : value at previous moment
                   . output argument : value at present moment
      CONS SUP (p): production set point computed by the supervisor (q/h)
                   . input argument : value at previous moment
                   . output argument : value at present moment
      VOL
               (v):volume of the reactor (1)
               (v):illuminated surface fraction (no dimension)
      FΤ
               (v):maximum specific growth rate for acetate
      MUM
                                                                (1/h)
               (v):control period (h)
      TT
               (v):dynamic of the reference trajectory (dimension less)
      LAMBDA
      INIT
               (p):initialisation flag (when equal to 0)
                  put to 1 by this programme
      VAR_OUT[0] :level 1 production set point (g/h)
      VAR OUT[1] : level 1 flow rate set point (1/h)
      VAR OUT[2]
                 :derivative of the model biomass concentration (g/1/h)
                   (to be compared to the derivative of the process conc.)
                  :array of internal variables to check the control
      TRACE [50]
   Description:
      . Computation of level 1 production and flow rate set points, VAR OUT[0]
      and VAR OUT[1], functions of level 2 set points, PROD SP2 and QE SP2.
      . Computation of the Manipulated Variable at current instant n, F0(n),
      function of level 1 production and flow rate set points,
      of measured flow rate, QE MES, and
      of light intensity measured at previous time, FO(n-1).
* /
#include <math.h>
/* prototype */
void lrpc();
double mod_rhod( );
double dercx( );
double signe();
double min( );
double max( );
```

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38.3 "Predictive control of the biomass production of the photoheterotrophic compartment"			
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax : (33) 1 69 20 05 63	Réf. : 2100	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.	fr	Page 39	

```
#ifndef ADERSA
void lrpc(double prod_sp2, double cx, double qe_sp2, double *F0, double qe mes,
          double *sm_sup, double *cons_sup, double vol, double fI, double muM,
          double dt, double lambda, double *init, double var_out[3],
          double trace[50])
#else
void lrpc(prod_sp2, cx, qe_sp2, F0, qe_mes,
          sm_sup, cons_sup, vol, fI, muM, dt, lambda, init, var_out, trace)
double
         prod_sp2, cx, qe_sp2, *F0, qe_mes,
         *sm_sup, *cons_sup, vol, fI, muM, dt, lambda, *init, var out[3],
         trace[50];
#endif
{
   double nhc=5.;
                           /* coincidence point (in dt) */
                           /* radiant flux increment (in W/m2) */
   double dF0=20.;
   double F0_min=10.;
double F0_max=400.;
                           /* min constraint on F0 (in W/m2) */
                           /* max constraint on F0 (in W/m2) */
   double dq=.1;
                           /* flow variation (dimensionless) */
   double cx min=0.5;
                          /* min constraint on CX (in g/l) */
   double cx max=1.5;
                          /* max constraint on CX (in g/l) */
/* internal variables declaration */
   double prod, dil, prod ref, delF0;
   double F01, F02, prod1, prod2, prod mod;
   double qe max , qe min , prod max , prod min ;
   double cons_prod1 , cons_qe1;
   double cons_prod0 , cons_prod0_min , cons_prod0_max;
   double
           dprod_min , dprod_max;
   double
            dcxdt, dy;
   short
            cnt;
/* saving the input arguments in the array 'trace' */
   trace[0]=prod_sp2; trace[1]=cx; trace[2]=qe_sp2;
                                                               trace[3]=*F0;
   trace[4]=qe_mes;
                       trace[5]=vol; trace[6]=fI;
                                                                trace[7] =muM;
   trace[8]=dt;
                       trace[9]=lambda;trace[10]=*init;
/* level 2 control */
   /* 1 flow and production constraints */
   qe max = qe sp2*(1+dq);
   qe_min = qe_sp2*(1-dq);
  prod_max = qe_max*cx_max;
  prod_min = qe_min*cx_min;
   /* 2_ feasible production setpoint calculation */
   cons_prod1 = max(prod min,min(prod max,prod sp2));
   /* 3_ real flow setpoint and corresponding dilution rate */
   cons qe1 = qe sp2;
   if (cons_prod1/cx_max > qe_sp2 )
    cons_qe1 = min(qe max, cons prod1/cx max);
   if (cons_prod1/cx_min < qe_sp2 )
    cons qe1 = max(qe min, cons prod1/cx min);
/\star computation of dilution and biomass production
  with anticipation of the dilution
                                                  * /
  dil = cons qe1/vol;
  prod = cx * qe mes;
```

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38 iomass production of the photo	.3 oheterotrophic compartment''	November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso	.fr	Page 40

```
/* PFC supervisor to cancel static bias of the scenario method
   Internal model of this PFC : first order without delay
                                 unit static gain
                                 trbo = trbf of the embeded system */
   /* 1_ computation of the internal model output of this PFC */
   if (*init < 0.5)
   {
     prod1 = mod rhod(cx,*F0,dil,vol,dt,nhc,fI,muM);
     *cons sup = prod + (prod1 - prod) / (1.-pow(lambda,nhc));
     *sm sup = *cons sup;
     *init = 1.;
   }
   *sm_sup = lambda * *sm_sup + (1. - lambda) * *cons_sup;
   /* 2.1 Computation of the output of the supervisor 'cons prod0' */
   cons prod0 = cons prod1 - prod + *sm sup;
   /* 2.2_ Transfer of the constraints 'F0_min' and 'F0 max' on 'cons prod0' */
   dprod max = mod rhod(cx,F0 max,dil,vol,dt,nhc,fI,muM) - prod;
   cons_prod0_max = prod + dprod_max / (1.-pow(lambda,nhc));
   dprod min = mod_rhod(cx,F0_min,dil,vol,dt,nhc,fI,muM) - prod;
   cons_prod0_min = prod + dprod_min / (1.-pow(lambda,nhc));
   cons_prod0 = max(cons_prod0_min,min(cons_prod0 max,cons prod0));
/* reference trajectory */
   prod_ref = cons_prod0 - pow(lambda,nhc)*(cons_prod0 - prod);
/* Iterative computation of the MV by means of a scenario method */
   dy = 1.e30; /* relative distance */
              /* counter of the 'while' loop */
/* saving 'F0' */
   cnt = 0;
   F01 = *F0;
   *F0 = (F0_{min}+F0_{max})/2.; /* to pass the test 'while' at the first time */
   while ((dy > 1.e-3) && (cnt <= 3) && (*F0 > F0_min) && (*F0 < F0 max))
   {
     cnt ++;
/*
    first scenario */
     prod1 = mod rhod(cx,F01,dil,vol,dt,nhc,fI,muM);
    second scenario */
     delF0 = dF0*signe(prod_ref - prod1);
     F02 = F01 + delF0;
     if (F02 < 0.)
     {
       F02 = 0.;
       delF0 = F02 - F01;
     prod2 = mod_rhod(cx,F02,dil,vol,dt,nhc,fI,muM);
/*
    computation of the Manipulated Variable 'F0' */
     *F0 = F01 + (prod ref - prod1)/(prod2 - prod1)*delF0;
/*
    relative distance 'dy' between solution and target */
     prod1 = mod_rhod(cx,*F0,dil,vol,dt,nhc,fI,muM);
     dy = fabs((prod_ref - prod1) / prod1);
     F01 = *F0;
                       /* for the next 'while' loop, if any */
   }
/* constraints on F0 */
```

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38 piomass production of the photo	.3 heterotrophic compartment''	November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso	.fr	Page 41

```
*F0 = max(F0 min,min(F0_max,*F0));
  /* printf(" dy cnt \t%13.5e %13.5e\n", dy, (float)cnt); */
/* model of the derivative of the biomass concentration */
  dcxdt = dercx(cx,*F0,dil,fI,muM);
/* transfer of output arguments */
  *cons sup = cons prod0;
  var out[0] = cons_prod1;
  var out[1] = cons qel;
  var out[2] = dcxdt;
/* saving output arguments in the array 'trace' */
                            trace[12]=cons_qe1; trace[13]=*cons_sup;
trace[15]=*F0; trace[16]=dcxdt;
  trace[11] = cons prod1;
  trace[14] = * sm_sup;
  trace[17] = dy;
  return;
}
/* --- MOD RHOD -----
  Function:
        Integration with Euler method
  Synopsis:
        MOD_RHOD(CX, F0, DIL, VOL, DT, NHC, FI, MUM, PROD)
*/
double mod rhod(cx,F0,dil,vol,dt,nhc,fI,muM)
double cx, F0, dil , vol , dt , nhc , fI, muM;
{
  double v, dv, vout , prod;
  int k;
  v = cx;
  for (k=1 ; k <= (int)nhc; k++)</pre>
      dv = dercx(v,F0,dil,fI,muM);
      vout =v + dt * dv;
      v=vout;
      }
  prod=vout*dil*vol;
  return (prod);
}
/* --- DERCX -----
   Function:
        Computation of the derivative of the biomass concentration
  Synopsis:
        DERCX(CX, F0, DIL, FI, DVT, MUM);
*/
double dercx(cx,F0,dil,fI,muM)
double cx, F0, dil, fI, muM;
{
```

ESA-ESTEC	"Predictive control of the b	MELISSA - Technical note 38 iomass production of the photo	3 heterotrophic compartment"	November 1999
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso	.fr	Page 42

```
/* Internal variables */
  double alpha, delta;
   double a, dx, I, J, x, rX, rX3, x3, x3p, k;
  double dcxdt;
  short i, i1;
                    /* dimension of array */
  #define Ndim 102
  short limitx[Ndim]; /* dimension must be >= np+2 */
/* Parameters of the RHODO first principles model (LGCB TN 45.1)
   double RT=.048; /* radius of the 7 litres reactor (m)
                                                                   * /
  double Ea=270; /* mean Schuster mass absorption coefficient (m2/kg) */
  double Es=370; /* mean Schuster mass scattering coefficient (m2/kg) */
  double KJ=15; /* half saturation constant
                                                           (W/m2) */
  double EpsJ=.01; /* mean efficient intensity
                                                           (W/m2)
                                                                   */
  double g=3.2; /* max ratio of V2/V3
                                                                   */
/* Parameter of the integration method
  */
  short np=100; /* number of integration step along the radius
                     (must be lower than dimension of array 'limitx') */
/* test of array dimension */
  if (Ndim < np+2)
    printf(" Dimension of array too short in dercx\n");
/* general parameters
   alpha=sqrt(Ea/(Ea+Es));
  delta=(Ea+Es)*cx*alpha*RT;
/* Computation of rx
  Integration interval : [0 1]
        This interval is divided into 'np' equal parts
        Integration : trapezium method
  Computation of Isigma and J
  Taking into account the mean efficient intensity EpsJ */
  dx = 1. / (float)np;
  J = 0.;
  i1 = 0;
  for (i = 1; i \le np; i ++)
  {
    x = 1./(2.*np) + (float)(i-1) * dx;
    I = 2.*F0*cosh(delta*x)/(x*(cosh(delta)+alpha*sinh(delta)));
    if (I > EpsJ)
    {
       J += x * I / (KJ + I);
    }
    else
    {
      il ++:
      limitx[i1] = i;
    }
  }
  J = J * dx;
```

/* Computation of the mean growth rate rX3 in volume V3 defined in TN45.1 */

ESA-ESTEC	"Predictive control of the b	November 1999	
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53 Fax : (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso.fr	Page 43

```
rX3 = 2. * fI * muM * cx * J;
/* Boundary of the interval where I <= EpsJ */
   x3p = 0.; x3 = 0.;
   if (i1 > 1)
   {
    x_{3p} = 1./(2.*np) + (float)(limitx[1] -1) * dx;
    x3 = 1./(2.*np) + (float)(limitx[i1] -1) * dx;
    if (limitx[1] == 1)
      x3p = 0.;
   }
/* Computation of the mean growth rate rX in total volume */
  a = 1 + x_3p + x_3p - x_3 + x_3;
  if (a > 0)
  {
    k = \min(q, 1/a);
  }
  else
  {
    k = q;
  }
  rX = k * rX3;
  dcxdt = -dil*cx + rX ;
  return (dcxdt);
```

}

ESA-ESTEC	"Predictive control of the b	November 1999		
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	Réf. : 2100
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.asso	.fr	Page 44