MELISSA

Memorandum of Understanding ECT/FG/MMM/97.012

ESTEC/Contract N° 12924/98/NL/MV Contract change notice No 02 of May 2000

TECHNICAL NOTE : 54.4

Overall strategy for the interfacing of the HPC to the MELISSA loop Phase II : closing the loop with HPC

Version : 0 Draft

J.-J. LECLERCQ

October 2001

10, rue de la Croix Martre 91873 PALAISEAU Cedex Téléphone : (33) 1 60 13 53 53 Télécopie : (33) 1 69 20 05 63 Courriel : adersa@adersa.com

Document Change Log

Version	Issue	Date	Observation
0	0	October 2001	Draft
1	0	2001	Original version

ESA-ESTEC	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II			October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 2

TABLE OF CONTENTS

1. INTRODUCTION	5
2. DESCRIPTION OF THE SIMULATOR	5
2.1. Limitations	5
2.2. Sizing of the compartments of the simulator	
2.3. Connections between compartments of the simulator	
2.3.1. Gaseous circuit	7
2.3.2. Liquid circuit	8
2.4. Input and output of the loop	8
3. METHOD OF SOLUTION	10
3.1. Introduction	10
3.2. The variables of the problem	
3.3. Chemical equations binding the variations of the main compounds	
3.4. Parameters of the Consumer compartment and of the HPC	
3.5. General system of equations	
4. STUDY OF DIFFERENT WAYS OF CLOSING	
4.1. Closing O ₂ , CO ₂ and NH ₃ /NO ₃	
4.2. Closing O ₂ and CO ₂	
4.3. Closing O ₂ and NH ₃ /NO ₃	
4.4. Closing CO ₂ and NH ₃ /NO ₃	
4.5. Conclusion	
5. EXAMPLES OF CLOSING	
5.1 Introduction	16
5.2. Deculta	10
5.2. Results	1/
6. CONCLUSION	
7. REFERENCES	
8. ANNEX (SOFTWARE)	
6.1. Closing the Gas and Liquid loops – Resolution of the system	
6.2. Simulation of the open extended MELISSA loop	
6.3. Parameters of the compartments	

Abbreviations or notations:

ESA-ESTEC	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II			October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 3

 $\begin{array}{l} AcOH : Acetic acid\\ CH : chlorophyll\\ CO_2 : carbon dioxide (gaseous or solvated)\\ EPS : exopolysaccharide\\ HPC : Higher Plant Chamber\\ NH_3 : ammonia (gaseous or solvated)\\ NO_2 : nitrite ion\\ NO_3 : nitrate ion\\ N_s : Nitrosomonas\\ N_b : Nitrobacter\\ PC : phycocyanin\\ XA : Spirulina active biomass\\ XV : Spirulina vegetative biomass\\ \end{array}$

Note :

In a figure, a graph ij is located by its row i and its column j.

The fundamental MELISSA loop is composed of the Consumer, Liquefying, Rhodobacter, Nitrifying and Spirulina compartments.

The extended loop is the fundamental one completed with the HPC.

ESA-ESTEC	Overall strategy for the	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II		
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 4

1. INTRODUCTION

During the meetings at Toulouse (July 2000) and Guelph (May 2001), it has been decided to close the MELISSA loop in order to demonstrate that it was able to furnish oxygen to a team of a few rats and to produce food from human wastes that are introduced into the liquefying compartment. This food will have two main origin : the Spirulina (and perhaps the Rhodobacter) and the edible part of the plants coming from the HPC.

In the previous Technical Note on the subject, TN 54.3, the study has been done on the fundamental loop composed of the Liquefying, Rhodobacter, Nitrifying and Spirulina compartments (compartments 1 to 4A) only, without HPC. It showed then that, on the one hand, the closing of the gas loop is possible without addition of any compound, and on the other hand, the closing of the liquid loop is also possible under the condition of adding NO₃ (1 molar % of NH₃ produced by Liquefying).

In the present study, the HPC, which is assumed to produce 20 % of the diet of 1 man, is interfaced to the fundamental loop.

As in TN 54.3, the proposed strategy is validated on a simulator which is as complete as possible at the moment and whose limitations are listed hereafter. The study, whose results strongly depend on the present models, shows that the closing of the gas and water loops are possible under conditions. It must be considered as a first attempt to quantify the problem.

2. DESCRIPTION OF THE SIMULATOR

2.1. Limitations

Due to different degree of achievement in the modelling of the compartments, the simulator is composed of both static and dynamic models : the Consumer and Liquefying are static and the other (Rhodobacter, Nitrifying and Spirulina) are dynamic and they are used in steady state. The HPC is a peculiar case : the chemical reactions have an average constant rate (the state of development of the plants is skipped) but the interactions between the gas and liquid phases are dynamic.

1_ The Consumer compartment, which is considered from the gaseous aspect only, is simply represented by a consumption rate of O_2 and a production rate of CO_2 . In the examples given hereafter, these data are (according to TN 47.3 by UAB) :

- O_2 consumption = 4.45 10^{-2} mol/h/rat;
- CO_2 production = 4 10⁻² mol/h/rat.

So the consumer compartment is a source of carbon and a sink of oxygen.

2_ The degradation of faeces and urea that occurs in the Liquefying compartment is total and represented by the following reactions from TN 17.1 by LGCB :

$$1 \text{ [faeces]} + 0.975 \text{ H}_2\text{O} \rightarrow$$

$$0.25 \text{ CO}_2 + 0.89125 \text{ H}_2 + 0.25 \text{ C}_2\text{H}_4\text{O}_2 + 0.0625 \text{ C}_4\text{H}_8\text{O}_2 + 0.1055 \text{ NH}_3$$
(R1)

$$CH_4ON_2 + H_2O \rightarrow CO_2 + 2 NH_3$$
 (R2)

ESA-ESTEC	Overall strategy for the	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II		
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 5

As the wastes do not contain sulphate nor phosphate, these substrates are added at the input of the Liquefying compartment.

3_ The Rhodobacter compartment is simulated according to the latest version of the first principles model of TN 45.1 by LGCB : the only source of carbon is the acetic acid. In order to fit this constraint, all the butyric acid produced by the present Liquefying is transformed into acetic acid according to the following global balanced chemical equation :

$$C_3H_7COOH + O_2 \rightarrow 2 CH_3COOH$$
 (R3)

The oxygen requested by this equation is produced by Spirulina and HPC.

 $4_$ The model of the nitrifying column is limited to TN 27.1 and TN 27.2 by LGCB and does not take into account :

- the inhibitory effect of NO_2^- and NO_3^- on the Nitrobacter growth (introduced in TN 27.3);
- the biofilm diffusion model (introduced in TN 27.3);
- the metabolism and growth of Nitrosomonas and Nitrobacter in presence of organic matter (introduced in TN 32.1). The heterotrophic model is not necessary as the Rhodobacter is supposed to transform 99.5 % of the acetate (at least in the present simulation).

5_ The Spirulina compartment is simulated according to the first principles model of TN 19.1 and 19.2 (Version 1, issues 0 and 1, January 1997) by LGCB. A Monod term for the phosphate $\frac{C_P}{P}$ has been added in the production rates of the active biomass (XA), of the

phosphate $\frac{C_{P}}{K_{P}+C_{P}}$ has been added in the production rates of the active biomass (XA), of the

phycocyanin (PC) and of the vegetative biomass (XV) in order to limit the kinetics when the phosphate concentration is going to zero (detail in TN 54.2 annex A3.1.2.).

As an additional information to the TN 19.1 and 19.2, it is mentioned that the synthesis of glycogen is represented by the following global chemical reaction :

$$CO_2 + 0.827 H_2O + 0.008 H_2SO_4 \rightarrow C H_{1.67} O_{0.71} S_{0.008} + 1.0745 O_2$$
 (R4)

6_ The Higher Plants Chamber (figure 1) is simulated according to the global, complete chemical equations of a plant growth described in TN 32.3 by LGCB :

$$CO_{2} + NH_{3} + HNO_{3} + H_{2}SO_{4} + H_{2}O \rightarrow$$

$$O_{2} + [CHONS]_{digestible} + [CHONS]_{fibre}$$
(R5)

and

$$CO_2 + NH_3 + HNO_3 + H_2SO_4 + H_2O \rightarrow (R6)$$

$$O_2 + [CHONS]_{waste}$$

whose stoechiometric coefficients are given in TN 32.3 table 15. The HPC is supposed to produce the plants at a constant rate to fit the menu proposed in this TN. The growth rates of the plants are extracted from the table 17c and recalled hereafter :

Plants	Waste (dry g/day)	Edible (dry g/day)
Tomato	32.97	3.45
Rice	82.71	69.06
Lettuce	1.77	2.07
Potato	63.34	126.79

ESA-ESTEC	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II			October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 6

Soybean	3.85	6.91
Spinach	10.88	6.91
Onion	10.90	6.91
Wheat	315.93	207.17
Total	522.35	429.27

 Table 1 : Growth rates of the plants of HPC for the diet of 1 man

The simulated HPC can produce a variable ratio of the diet of 1 man. The HPC is simulated dynamically at steady state, taking into account

- the gas/liquid equilibria of O₂, CO₂ and NH₃,
- the dissociation of these compounds in the liquid phase,
- the pH and temperature.

Figure 1 : Scheme of the Higher Plants Chamber

2.2. Sizing of the compartments of the simulator

The Consumer and the Liquefying compartments, which are reduced to mere chemical reactions, have no volume.

The volume of the Rhodobacter compartment is fixed to its minimum (9 l) to allow the transformation of all the acetate produced by the wastes.

The size of the nitrifying column is reviewed in order to allow a good oxidation of ammonia into nitrate with a very low production of nitrite as it is explained in annex A4.2 of TN 54.2. Given the value of KLa in the simulator (51 h^{-1}) the volume of the fixed bed is determined to 17.5 litres (the load is $0.3 \text{ gN/m}^3/\text{day}$).

The volume of the Spirulina compartment is set to 77 litres, as it is in the pilot at UAB.

The volume of gas and liquid of the HPC are set arbitrarily to 40 m^3 and 100 litres, respectively.

2.3. Connections between compartments of the simulator

2.3.1. Gaseous circuit

Air is recirculating successively from the Consumer to the Nitrifying, the Spirulina, the HPC and then back to the Consumer. At HPC output, the NH₃ Gas is supposed to be captured to

ESA-ESTEC	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II			October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 7

avoid ammonia in the air of the Consumer and sent into the liquid stream to respect the mass conservation of the whole process. For Rhodo too, the CO_2 and NH_3 present in the inert gas is captured and sent into the liquid stream. The oxygen needed for oxidation of H_2 and for transformation of butyric acid into acetic acid in Lique is extracted from the air circuit so that the mass balance of the whole process is fulfilled.

2.3.2. Liquid circuit

The stream of water is recirculating through the 5 compartments : Lique, Rhodo, Nitri, Spiru and HPC. A part of the main liquid stream is derived at output of Rhodo so that not to oxidise the NH3 necessary to the HPC. All the biomass outgoing from Rhodo and Spiru is removed as dry matter while the biomass produced by Nitri is fixed. The crop extracted from HPC is assumed dry too. The human wastes (faeces and urea) are introduced continously at the input of Lique as dry matter.

The water produced or consumed by the biochemical reactions is neglected and the one coming from evapotranspiration of plants is injected back into the main stream of water. These circuits are represented in the figure 2.

2.4. Input and output of the loop

The input is composed of

- dry human wastes (faeces and urea);
- SO₄ and PO₄ added in the liquid circuit;
- O₂ or CO₂ (depending of type of closing) in the gaseous circuit;
- carbon rejected in the carbonic gas of the rats.
- The output is composed of
- dry biomass;
- dry plants;
- oxygen absorbed by the rats.

ESA-ESTEC	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II			October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 8

Liquid Recirculation

One remembers that the consumption of gaseous O_2 in the Liquefying compartment is not physically possible; but, in the simulator, it is needed by the transformation of H_2 and butyric acid, as explained above, in order to fulfil the mass balance of the whole process.

ESA-ESTEC	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II			October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 9

3. METHOD OF SOLUTION

3.1. Introduction

The general approach is to consider each of the chemical compounds and its variation rates (production or consumption) in each of the compartments.

The principle of the method is based on the fact that the loop of a compound can be closed only and only if the sum of its variation rates is zero. It is obvious that this condition cannot be fulfilled for all the compounds simultaneously and that the first step is to choice which ones are the best candidates.

Under this consideration, H_2O is discarded because it is easy to add (or remove) H_2O into (or from) the mean liquid stream. So are SO_4 and PO_4 because they are not components (not yet in this simulator) of the human wastes.

The solids too, as biomass or waste part of the plants, are not considered because their transformation (in the Liquefying compartment or a burner for example) is not yet modelled.

Of course it will be checked if the by-products, as nitrite, or the partly transformed compounds, as acetate, accumulate or not in the loop.

So the main compounds whose closing is studied here are : O₂, CO₂, NH₃ and NO₃.

3.2. The variables of the problem

In order to have the most global approach, the variables are :

- n : number of rats in the Consumer compartment
- y : production of active biomass XA in Spiru (mol/h)
- v : input rate of human wastes in Liquefying compartment
- ρ : ratio of the diet for 1 man produced by HPC

<u>Remarks :</u>

- Although the ratio of the diet produced by HPC, ρ, has been fixed to 20 % at the meetings in Toulouse and Guelph, it is considered as a variable to increase the degree of freedom of the problem during the study.
- The production of active biomass of Spirulina, y, is equivalent to the light flux.
- The production of biomass of Rhodobacter is bound to the input rate of waste v in order to transform all the acetate coming from the Lique compartment. Then it is not a variable.

3.3. Chemical equations binding the variations of the main compounds

The following chemical equations are stoechiometric but not completely balanced as they are reduced to the only compounds implied in the problem. They globally represent the steady state behaviour of a compartment around a functioning point on which the stoechiometric coefficients depend. For example, in the case of Spiru, the stoechiometric coefficients α_1 , α_2 , and α_3 cannot be explicitly given but they are computed by the simulator. The equation (R7) does not make appear the other biomass (G and EPS) because XA is the only key element for the determination of the light flux. The same approach is done for the other compartments.

<u>Spiru :</u>	
$\alpha_1 \operatorname{CO}_2 + \alpha_2 \operatorname{NO}_3 \rightarrow \operatorname{O}_2 + \alpha_3 \operatorname{XA}$	(R7)

ESA-ESTEC	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II			October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 10

$$\frac{\text{Nitri:}}{\beta_1 O_2 + \beta_2 CO_2 + \beta_3 NH_3} \rightarrow NO_3$$
(R8)

$$\frac{\text{Rhodo}:}{(1 + \alpha) + \alpha + \alpha} = CO$$
(R9)

$$\gamma_1 \text{ NH}_3 + \gamma_2 \text{ AcOH} \rightarrow \text{CO}_2$$
 (R9)
Lique:

waste +
$$\varepsilon_1 \quad O_2 \rightarrow \varepsilon_2 \operatorname{CO}_2 + \varepsilon_3 \operatorname{NH}_3 + \varepsilon_4 \operatorname{AcOH}$$
 (R10)

<u>Remark :</u>

In this study the compound 'waste' is composed of 9.5 10^{-2} mol of faeces and 1.036 10^{-1} mol of urea (TN 35.1).

3.4. Parameters of the Consumer compartment and of the HPC

The behaviours of these 2 compartments are described by means of the following parameters which represent the variation rates of the involved compounds:

- r_{01} : O₂ consumption rate of 1 rat (negative value; mol/h)
- r_{02} : CO₂ production rate of 1 rat (positive value; mol/h)
- r_{51} : O₂ production rate of HPC for 100 % diet (positive value; mol/h)
- r_{52} : CO₂ consumption rate of HPC for 100 % diet (negative value; mol/h)
- r₅₃ : NH₃ consumption rate of HPC for 100 % diet (negative value; mol/h)

 r_{54} : NO₃ consumption rate of HPC for 100 % diet (negative value; mol/h)

 r_{55} : SO₄ consumption rate of HPC for 100 % diet (negative value; mol/h)

 r_{56} : PO₄ consumption rate of HPC for 100 % diet (negative value; mol/h)

3.5. General system of equations

The necessary and sufficient condition for closing the loop of a compound j whose steady state variation rate in a compartment i is v_{ij} :

$$\mathbf{v}_{ij} = \mathbf{0} \tag{1}$$

For each compartment, the variations rates (algebraic values) of the main involved compounds are gathered in the tables 2 and 3 where $\xi = \varepsilon_3 - \varepsilon_4 \cdot \frac{\gamma_1}{\gamma_2}$.

	O ₂ variation rate (mol/h)	CO ₂ variation rate (mol/h)
Consu	$\mathbf{r}_{01} \cdot \mathbf{n}$	$\mathbf{r}_{02} \cdot \mathbf{n}$
Lique	$\mathbf{\epsilon}_1 \cdot \mathbf{v}$ (*)	$\mathbf{\epsilon}_2 \cdot \mathbf{v}$
Rhodo	0	$-\frac{1}{\gamma_2}\cdot \varepsilon_4\cdot v$
Nitri	$-\frac{\beta_1}{\beta_3}\cdot\left(\xi\cdot\nu+r_{53}\cdot\rho\right)$	$-\frac{\beta_2}{\beta_3}\cdot(\xi\cdot\nu+r_{53}\cdot\rho)$
Spiru	$\frac{1}{\alpha_3} \cdot y$	$\frac{\alpha_1}{\alpha_3} \cdot y$
НРС	$r_{51} \cdot \rho$	$r_{52} \cdot \rho$

ESA-ESTEC	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II			October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 11

(*) : One remembers that the consumption of gaseous O_2 in the Liquefying compartment is not physically possible; but, in the simulator, it is needed by the transformation of H_2 and butyric acid, as explained above, in order to fulfil the mass balance of the whole process.

	NH ₃ variation rate (mol/h)	NO ₃ variation rate (mol/h)
Consu	0	0
Lique	$\mathbf{\epsilon}_3 \cdot \mathbf{v}$	0
Rhodo	$-\frac{\gamma_1}{\gamma_2}\cdot \epsilon_4\cdot \nu$	0
Nitri	$-\beta_{3}\cdot\left(\frac{\alpha_{2}}{\alpha_{3}}\cdot y+r_{54}\cdot\rho\right)$	$-\left(\frac{\alpha_2}{\alpha_3}\cdot y+r_{54}\cdot\rho\right)$
Spiru	0	$\frac{\alpha_2}{\alpha_3} \cdot y$
HPC	$r_{53} \cdot \rho$	$r_{54} \cdot \rho$

Table 2 : O₂ and CO₂ variation rates of the process

Table 3 : NH₃ and NO₃ variation rates of the process

When the global relation (1) is applied to each of the compound O_2 , CO_2 , NH_3 and NO_3 , it implies the 3 following equations :

$$\mathbf{r}_{01} \cdot \mathbf{n} + \left(\boldsymbol{\varepsilon}_{1} - \frac{\boldsymbol{\beta}_{1}}{\boldsymbol{\beta}_{3}} \cdot \boldsymbol{\xi} \right) \cdot \boldsymbol{\nu} + \frac{1}{\boldsymbol{\alpha}_{3}} \cdot \mathbf{y} + \left(\mathbf{r}_{51} - \frac{\boldsymbol{\beta}_{1}}{\boldsymbol{\beta}_{3}} \cdot \mathbf{r}_{53} \right) \cdot \boldsymbol{\rho} = 0$$
⁽²⁾

$$\mathbf{r}_{02} \cdot \mathbf{n} + \left(\boldsymbol{\varepsilon}_2 - \frac{1}{\gamma_2} \cdot \boldsymbol{\varepsilon}_4 - \frac{\beta_2}{\beta_3} \cdot \boldsymbol{\xi} \right) \cdot \boldsymbol{\nu} + \frac{\alpha_1}{\alpha_3} \cdot \mathbf{y} + \left(\mathbf{r}_{52} - \frac{\beta_2}{\beta_3} \cdot \mathbf{r}_{53} \right) \cdot \boldsymbol{\rho} = 0$$
(3)

$$\xi \cdot \mathbf{v} - \beta_3 \frac{\alpha_2}{\alpha_3} \cdot \mathbf{y} + (\mathbf{r}_{53} - \beta_3 \cdot \mathbf{r}_{54}) \cdot \mathbf{\rho} = 0$$
⁽⁴⁾

The relation (4) represents the closing of N (nitrogen) globally under its NH₃ and NO₃ forms.

From this set of equations, four possible closings are investigated :

- closing of O₂, CO₂ and NH₃/NO₃.
- closing of O₂ and CO₂.
- closing of O₂ and NH₃/NO₃.
- closing of CO₂ and NH₃/NO₃.

4. STUDY OF DIFFERENT WAYS OF CLOSING

4.1. Closing O₂, CO₂ and NH₃/NO₃

In that case the 4 variables n, v, y and ρ are bound by the 3 equations (2), (3) and (4). Considering that the production of biomass XA can vary between its minimum (0 g/h) and its maximum (1.1 g/h), the ranges of the other variables, computed by (2), (3) and (4), are :

$$0 \leq n \leq 1.1$$

ESA-ESTEC	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II			October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 12

$$\begin{array}{rcl} 0 \leq \nu & \leq .14 \\ +.01 \leq \rho & \leq 0 \end{array}$$

So, the existence domain of ρ is negative which is physically impossible. It means that the simultaneous closing of O₂, CO₂ and NH₃/NO₃ is also impossible, in the case of the present simulator. Of course a simulator with another model a Liquefying could give a complete different result.

4.2. Closing O₂ and CO₂

In that case the 4 variables n, v, y and ρ are bound by the 2 equations (2) and (3). Considering now not only the variation range of y but also the variation range of ρ between 0 and 0.25 (a domain that contains the choice of 20 %), the ranges of the other variables n and v are plotted in the figure 2.

Figure 2 : Domain of n and v for closing of O₂ and CO₂

It is recalled here that, in meetings in Toulouse and Guelph, it was expected that the HPC would produce 20 % of the diet of 1 man and that the team would be composed of 3 rats. The figure 2 shows that, if the HPC is required to produce 20 % of the diet of 1 man, the number of rats should be between 8 and 9.5, the fraction of input wastes between 0 and 3 %. On the other side, if the number of rats is fixed to 3, the HPC has to produce between 3 and 7.5 % of the diet, the fraction of input wastes should be between 0 and 11 %.

ESA-ESTEC	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II			October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 13

In these 2 approaches, either the max input wastes flow (3 %) is too low, either the max fraction of diet produced by HPC (7.5 %) is too low. So it can be concluded that the experiment of closing O_2 and CO_2 simultaneously is not interesting. *Remark* :

When there is no HPC in the MELISSA loop (then the fraction of the diet for 1 man is zero), according to the figure 2 the number of rats should be between 0 and 1.6, the fraction of input wastes between 0 and 13.5 %. These conditions have been fulfilled in TN54.3 where the study is done without HPC. In fact the present study includes the previous one of TN 54.3.

4.3. Closing O₂ and NH₃/NO₃

In that case the 4 variables n, v, y and ρ are bound by the 2 equations (2) and (4).

Considering as previously the variation ranges of y and ρ , the ranges of the other variables n and v are plotted in the figure 3.

Figure 3 : Domain of n and v for closing of O₂ and NH₃/NO₃

The figure 3 shows that, if the HPC is required to produce 20 % of the diet of 1 man, the number of rats should be between 7.5 and 9, the fraction of input wastes between 13 and 27 %.

ESA-ESTEC	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II			October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 14

4.4. Closing CO₂ and NH₃/NO₃

In that case the 4 variables n, v, y and ρ are bound by the 2 equations (3) and (4).

Considering as previously the variation ranges of y and ρ , the ranges of the other variables n and v are plotted in the figure 4.

Figure 4 : Domain of n and v for closing of CO₂ and NH₃/NO₃

The figure 4 shows that, if the HPC is required to produce 20 % of the diet of 1 man, the number of rats should be between 8 and 9.5, the fraction of input wastes between 13 and 27 %.

4.5. Conclusion

The closing of O₂, CO₂, NH₃ and NO₃ is impossible simultaneously.

The closing of O_2 and CO_2 presents little interest because too low proportions of HPC and human wastes will be involved in the experiment.

Only the closing of O_2 and NH_3/NO_3 or the closing of CO_2 and NH_3/NO_3 can be proposed. They are more investigated and compared hereafter.

ESA-ESTEC	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II			October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 15

5. EXAMPLES OF CLOSING

5.1. Introduction

The 2 types of closing (first O₂ and NH₃/NO₃ and then CO₂ and NH₃/NO₃) are simulated on the global simulator described in section 2. The number of rats is the same in the 2 cases : 8.5, value that is the middle of the common domain of existence (between 8 and 9). The HPC produces 20 % of the diet of 1 man. When a substrate lacks because it is not in sufficient quantity in the input wastes, it is supplied so that the gas and liquid loops can be closed at steady state.

The main parameters of the process are :

- $r_{01} = 4.45 \ 10^{-2} \ \text{mol/h/rat}$: O₂ consumption for 1 rat (TN 47.3 by UAB); $r_{02} = 4 \ 10^{-2} \ \text{mol/h/rat}$: CO₂ production for 1 rat (TN 47.3 by UAB);
- q = 0.77 l/h : re-circulating liquid flow rate; •
- q' = 1.8 l/h: re-circulating air flow rate;
- molar fraction of O_2 in the air at the Consumer input : .21; •
- molar fraction of CO_2 in the air at the Consumer input : .003; •
- molar concentration of NH₃ (total form in liquid) at the HPC output : $3 \ 10^{-4}$; •
- molar concentration of NO₃ at the HPC output : $2 \ 10^{-3}$; •
- molar concentration of SO₄ and PO₄ at the HPC output : $1 \ 10^{-3}$; •
- input rate of 1 man wastes : $\frac{9.5 \ 10^{-3}}{3}$ mol/h of faeces + $\frac{1.036 \ 10^{-1}}{3}$ mol/h of urea (TN

35.1).

The other parameters are detailed in annex (initialisation Matlab files : i_sim_0.m, i_sim_1.m, i_sim_2.m, i_sim_3.m, i_sim_4.m and i_sim_5.m).

As the coefficients α , β , γ and ε of the equations (2) to (4) are non linear depending on the concentration of the substrates, the solution of the system is obtained through an iterative algorithm, as in TN 54.3.

ESA-ESTEC	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II			October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 16

5.2. Results

The results of the 2 simulations are gathered in the table 2. The main features :

- HPC produces the main part of O_2 : 85 or 90 % depending of the type of closing;
- correlatively HPC consumes the main part of CO₂ : 87 or 92 %;
- in the case of closing of O_2 , 5 % of the total consumption of CO_2 has to be injected at input of the HPC;
- in the case of closing of CO_2 , 5 % of the total consumption of O_2 has to be injected at input of the consumer compartment;

	closing O ₂ and	closing CO ₂ and
	NH ₃ /NO ₃	NH ₃ /NO ₃
Number of rats	8.5	8.5
Input rate of man wastes (ratio of 1 man)	.23	.19
O ₂ consumption in Consu (mol/h)	.378	.378
O ₂ consumption in Nitri (mol/h)	.021	.016
O ₂ production in Spiru (mol/h)	.062	.036
O ₂ production in HPC (mol/h)	.340	.340
CO ₂ production in Consu (mol/h)	.340	.340
CO ₂ production in Lique (mol/h)	.010	.008
CO ₂ consumption in Spiru (mol/h)	.047	.026
CO ₂ consumption in HPC (mol/h)	.320	.320
Supply of CO ₂ (mol/h)	.019	0
Supply of O ₂ (mol/h)	0	.021
Production of biomass Rhodo (dry g/h)	0.12	0.10
Production of biomass Spiru :	2.12	1.27
XA+G+EPS (dry g/h)		
Production of higher plants (dry g/h)	3.58	3.58
Light flux for Rhodo (W/m ²)	400	320
Light flux for Spiru (W/m ²)	107	40
Ratio of the main liquid flow going	.78	.73
through Nitri and Spiru		
NO2 in the loop (mol/l)	1.4 10 ⁻⁴	1.4 10 ⁻⁴
Acetate (all forms) at output of Rhodo	1.8 10 ⁻⁵	1.5 10 ⁻⁵
(mol/l)		
Conversion yield of NH ₃ into NO ₃ in Nitri	.957	.957

 Table 2 : Comparison of the 2 types of closing

6. CONCLUSION

The study has established a tool and a method to determine the domain of existence of the variables of the problem : number of rats, ratio of input human wastes and ratio of diet

ESA-ESTEC	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II			October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 17

produced by the HPC. The method is general and the results will be improved each time a better knowledge of the process is acquired.

Two examples illustrate the way to determine the conditions that make possible the closing of the gas and liquid loops in the present state of the project. Their results are surprising compared to which was expected at the meeting in Toulouse : when the HPC is required to produce 20 % of the diet of 1 man, the team has to be composed of about 8 rats (compared to 3 or 4 expected) and the ratio of input wastes of 1 man is only about 20 % (compared to the 100 % expected).

Of course these results strongly depend on the mean composition of the wastes and on the modelling of the Liquefying compartment. Any modification will imply new results.

On the basis of the results of TN 54.3 and 54.4, the successive steps to close the whole loop could be :

- first, with all the compartments connected except HPC, the experiment is in fact a replay of Biorat by closing the gas loop alone with 1 rat;
- then the liquid loop is closed too;
- at the end the HPC is connected. Depending on the state of development of the plants, the rats are added in sufficient quantity to consume the O₂ produced by HPC. The ratio of input wastes is tuned.

7. REFERENCES

CORNET J.F., DUSSAP C.G., GROS J.B. "Modelling of physical limitations in photobioreactors. Adaptation of the light energy transfer model to cylindrical geometry" ESA contract PRF 130820. July 1993. TN 19.1.

CORNET J.F., DUSSAP C.G., GROS J.B. "Modelling of physical limitations in photobioreactors. Modelling of exopolysaccharide synthesis in cultures of Spirulina Platensis" ESA contract PRF 130820. July 1993. TN 19.2.

CORNET J.F., DUSSAP C.G., GROS J.B. "Kinetic modelling of Rhodospirillum Rubrum growth in rectangular photobioreactor" ESA contract 12923/98/NL/MV. April 1999. TN 45.1.

GODIA,F.; ALBIOL,J.; CREUS,N.; PEREZ,J.; "Preliminary review of the pilot plant final loop" ESTEC/contract PRF 11549/95/NL/FG. December 2000. TN 47.3 (Issue: 0).

LECLERCQ J.-J. : "Steady state of the compartments : Rhodobacter, Nitrifying and Spirulina". Contract ESTEC n° 12924/98/NL/MV, Contract change notice n° 1 of May 1999. March 2001. TN 54.1.

LECLERCQ J.-J. : "Gas-Liquid equilibrium in global simulator". Contract ESTEC n° 12924/98/NL/MV, January 1997. TN 35.1.

POUGHON L. "Review of models and basis of a dynamic structured model of the nitrifying compartment". ESTEC contract PRF 151739, February 1996, TN 27.1.

POUGHON L. "Description of the nitrifying column model and first simulations". ESTEC contract PRF 151739, May 1996, TN27.2

POUGHON L. "Including a higher plants chamber in the MELISSA loop". ESTEC contract PO 161081, June 1997, TN 32.3.

ESA-ESTEC	Overall strategy for the	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II		
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 18

8. ANNEX (Software)

```
6.1. Closing the Gas and Liquid loops – Resolution of the system
°
%
                                                                                      *
         Connected compartments 0,1,2,3,4A and 4B (numbered 5 here)
                                                                                      *
%
         Version 3.0
                           October 2001
%
                                                                                      *
%
                                                                                      *
         i sim.m
                    Initialization of the simulation
%
                                                                                     *
                     of the extended MELISSA loop (with HPC)
                                                                                      *
%
°
clear all
global ind_2u ind_2v ind_3u rKdis_2 rKdis_3
global VM_0 Gin_0
global Gin_1 Fin_1 NG1_1 NG_1 NL_1 Kdis_1 rKdis_1 Yp_1p
global Gin_2 Fin_2 NG_2 NL_2 NO_2 vNB_2 vNM_2 VL_2 Yx1_2 Kdis_2 KSS04_2 ...
   A2_2 B2_2 GG1_2 GG2_2
   FRmin_2 FRmax_2 fI_2 RT_2 Ea_2 Es_2 muM_2 KJ_2 EpsJ_2 q_rhod_2 zmin_I_2
global Gin_3 Fin_3 NL_3 NG_3 NS_3 NB_3 NX_3 NO_3 NI_3 NV_3 ...
Ae_3 Be_3 Ce_3 De_3 E_3 WX_3 WYG_3 WYL_3 ...
iO2_3 iCO2_3 iNH3_3 iNO2_3 iSub_3 iXNs_3 iXNb_3 iXag_3 ...
KlNs_3 KlNb_3 KmNs_3 KmNb_3 mumax_3 maint_3 Yx_3 Yx1_3 Yml_3
                                                                      . . .
   RL_3 indG_3 indL_3 Kdis_3
global Fin_4 NG_4 NL_4 NO_4 vNB_4 vNM_4 VL_4 Yx1_4 Kdis_4 ...
   A2_4 B2_4 GG1_4 GG2_4
                            . .
   FRmin_4 FRmax_4 FRmaxc_4 fI_4 zPC_4 zCH_4
   RT_4 Ea_4 Es_4 muM_4 muEPS_4 Kj_4 KjEPS_4 Fmin_4 zmin_I_4 ...
   KSNO3_4 KSSO4_4 KSPO4_4 KSPC_4
global Gin_5 Fin_5 NG_5 NL_5 NS_5 VG_5 VL_5 Yxle_5 Yxlw_5 Kdis_5 ...
Diete_5 Dietw_5 A2_5 B2_5 ind_3u5
global idisp
% Initializing global parameters
idisp=0; % flag to display intermediate variables (if equal to 1)
  istudy=1;% flag to look for the existence interval of 'nRat' and 'nMan' (if equal to 1)
  lambda = 0*.1; % relaxation coefficient
  niter=10; % number of iterations
% Type of closed loop
typloop = 1; titre = 'Closed loop for 02 and CO2';
 typloop = 2;
typloop = 2;
typloop = 3;
typloop = 3;
typloop = 4;
titre = 'Closed loop for 02 , CO2 and NH3';
typloop = 4;
titre = 'Closed loop for 02 and NH3/NO3';
% Initializing parameters versus the type of closed loop
8 _____
  if typloop == 1
   nRat = 5.5; % number of rats in the consumer compartment
   nMan = .08; % ratio of 1 man_waste at input of the liquefying compartment
    cXA0_4 = 2; % (g/l) Value of biomass at starting of the iterative procedure
    cover_p=.10; % possible choice of 'cover'
                % Recall: HPC has to furnish 20 % of the need of 1 man (Toulouse and Guelph
meeting)
   share2 = .6; % sharing ratio of liquid at output of compart 2 (Rhodo) towards Nitri
  elseif typloop == 2
               % number of rats in the consumer compartment
    nRat = 1;
   nMan = .1;
               % ratio of 1 man_waste at input of the liquefying compartment
    CXA0 \ 4 = 2;
               % (g/l) Value of biomass at starting of the iterative procedure
    share2 = .6; % sharing ratio of liquid at output of compart 2 (Rhodo) towards Nitri
  elseif typloop == 3
               % number of rats in the consumer compartment
    nRat = 8.5;
   nMan = .2; % ratio of 1 man_waste at input of the liquefying compartment
    cXA0_4 = 2; % (g/1) Value of biomass at starting of the iterative procedure
    cover_p=.20; % possible choice of 'cover'
```

ESA-ESTEC] Overall strategy for the	MELISSA - Technical Note 54.4 interfacing of the HPC to the M	I ELISSA loop – Phase II	October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 19

```
% Recall:HPC has to furnish 20 % of the need of 1 man (Toulouse and Guelph
meeting)
   share2 = .8; % sharing ratio of liquid at output of compart 2 (Rhodo) towards Nitri
  elseif typloop == 4
   nRat = 8.5; % number of rats in the consumer compartment
nMan = .23; % ratio of 1 man_waste at input of the liquefying compartment
   cXA0_4 = 1.4;% (g/l) Value of biomass at starting of the iterative procedure
   cover_p=.20; % possible choice of 'cover'
               % Recall: HPC has to furnish 20 % of the need of 1 man (Toulouse and Guelph
meeting)
  share2 = .7 ;% sharing ratio of liquid at output of compart 2 (Rhodo) towards Nitri
  end
  % The G flow rate of the Spirulina compart is set to the other compartments.
 Gin_4 = 180;
                  % incoming gas flow rate (1/h) (from TN 43.110 p.26, UAB)
  % The recirculating L flow is set to 0.77 l/h (previous value of flow through Spiru).
 % Then the residence time in Spiru is now > 100 h
 % The volume of the Nitri compart is modified to keep its residence time unchanged
 % The volume of Rhodo is set to 9 l : minimum for Fr=400 W/m2 and a biomass production of
.118 g/h
 Fcirc = .77;
               % Recirculating L flow rate (arbitrary value) (1/h)
 Fin_1 = Fcirc; % liquid flow rate through Lique (1/h)
 Fin_2 = Fcirc; % liquid flow rate through Rhodo (1/h)
 Fin_5 = Fcirc; % liquid flow rate through HPC (1/h)
 Fin_3 = Fcirc*share2;% liquid flow rate through Nitri(1/h)
 Fin_4 = Fin_3; % liquid flow rate through Spiru(1/h)
% Initializing parameters of compart.
Matom = [12; 1; 16; 14; 32; 31]; % C H O N S P atomik mass
 i_sim_0
 i_sim_1
 i_sim_2
 i_sim_3
 i_sim_4
 i sim 5
% Initializing indices used in the links between compart.
 _____
  % 1. Link from Rhodo to Nitri
                                   % index of CO2_L NH3_L PO4 SO4 at Rhodo L output
 ind_2u = [1, 2, NG_2+2, NG_2+1];
 ind_2v = [2, 3, NG_3+3, NG_3+4];
                                     % index of CO2_L NH3_L PO4 SO4 at Nitri L input
  % 2. Link from Nitri to Spiru
 i1 = (NB_3+1)*NG_3+1; % index of O2_G in part C of nitri column
 i2 = (NB_3+2)*NG_3+(NB_3+1)*(NG_3+NL_3)+1; % index of O2_L in part C of Nitri
 i3 = i2+NG_3+1; \% index of NO3 in part C of nitri column
                 \ i3+1 and i3+2 : indices of PO4 and SO4, respectively in part C
  ind_3u = [i1, i1+1, i2, i2+1, i3, i3+2, i3+1]; % 02_G C02_G 02_L C02_L NO3 S04 P04
  % 3. Link from Rhodo and Spiru to HPC
 ind 3u5 = i2+2i
                      % index of NH3 L at Nitri output vector
% Conversion due to dissociation in the links between compartments
8 _____
            CO2_L NH3_L AcOH_L SO4 PO4
 8
 rKdis_1 = [(1+Kdis_1)./(1+Kdis_2); 1; 1];
                                                    % from Lique to Rhodo
                                      CO2_L NH3_L
                                                       P04 S04
 rKdis_2 = [(1+Kdis_2(1:2))./(1+Kdis_3(2:3)); 1; 1]; % from Rhodo to Nitri
        02_G C02_G 02_L
                            CO2_L
                                                     NO3 SO4 PO4
 8
                1; 1; (1+Kdis_3(2))/(1+Kdis_4(2)); 1; 1; 1];% from Nitri to Spiru
 rKdis 3 = [1;
% Initializing yield of acetate consumption in Rhodo
% _____
 Yx_AcOH = .995; % value supposed low enough to avoid C limitation
% Set point of conc. of the main compounds at output of HPC
 -----
°
 fm_02_0 = .21; % O2 G (molar fraction of O2 at output of HPC)
fm_CO2_0 = 3e-3; % CO2 G (molar fraction of CO2 at output of HPC)
 spNH3_5 = 3.0e-4; % (mol/1) NH3 L total at output of HPC
 spNO3_5 = 1.0e-2; % (mol/l) NO3 at output of HPC
 spNO3_5 = 2.0e-3; % (mol/l) NO3 at output of HPC
 spSO4_5 = 1.0e-3; % (mol/l) SO4 at output of HPC
 spPO4_5 = 1.0e-3; % (mol/l) PO4 at output of HPC
% Initializing parameters
 _____
2
 % Production rate of CO2 : 4e-2 mol/h/rat
```

ESA-ESTEC	Overall strategy for the	MELISSA - Technical Note 54. interfacing of the HPC to the M	4 IELISSA loop – Phase II	October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 20

```
rCO2_0 = rCO2r_0*nRat; % mol/h for n rats
   % Consumption rate of O2 : 4.45e-2 mol/h/rat
  r02_0 = r02r_0*nRat;
                                      % mol/h for n rats
\ Conc. of N2 and H2O in gas phase (perfect gases at T='Temp' Kelvin and P=1 atm)
% (molar conc. same for all the compart because gas flow rate not depending on T)
 fm_H2O_0 = 5.796e-2;
                                                          % H2O (molar fraction)
  fm_N2_0 = 1 - fm_O2_0 - fm_H2O_0; % N2 (molar fraction); CO2 neglected
  cN2_0 = fm_N2_0 / VM_0; % mol/l
  cH2O_0 = fm_H2O_0 / VM_0;
                                                   % mol/l
                                cH2O_2 = cH2O_0;
  cN2_2 = cN2_0;
  cN2_3 = cN2_0;
                                    cH2O_3 = cH2O_0;
                                   cH20_4 = cH20_0;
  cN2 \ 4 = cN2 \ 0;
% Yield of the non-constrained compartments (Lique, Rhodo, HPC)
8 -----
   % Yield of products of the Liquefying compartment
  Faec = 9.5e-2/3; % mol/h (faeces of 1 man; according to TN35.1, ADERSA)
  Urea = 1.036e-1/3; % mol/h (urea of 1 man; according to TN35.1, ADERSA))
  Yp_1p = (Faec*Yxf_1 + Urea*Yxu_1); % Yield of products (H2 CO2 NH3 AcOH BuOH) for 1
man_waste (faeces + urea)
  Yp_1(1,1) = -Yp_1p(1,1)/2-Yp_1p(5,1);  Lique consumption yield of 02
  Yp_1(2:3,1) = Yp_1p(2:3,1);
                                                             % Lique production yield of CO2 and NH3
  y_{p_1(4,1)} = y_{p_1(4,1)+2}y_{p_1(5,1)};  Lique production yield of AcOH
   % Yield of substrates of the Rhodobacter : Yp(1) NH3 + Yp(2) AcOH --> CO2
  Yp_2 = Yx1_2(2:3) / Yx1_2(1); % conversion yield of NH3 AcOH into CO2
   % Variation rate of substrates and product of HPC (O2 CO2 NH3 NO3 SO4 PO4)
  ri_5 = Yxle_5 * Diete_5' + Yxlw_5 * Dietw_5'; % mol/h (food need of 1 man per day)
% Computation of the max production of active biomass of Spiru
8 _____
  for ii = 1:10
      %>1.Input of Spiru
      % 1.1.Estimation of gas input of Spiru
      CG0_4 = [fm_02_0/VM_0+r02_0/Gin_4; (rC02_0+nMan*Yp_1(2))/Gin_4]; % 02 CO2 (mol/1)
      % 2.2.Estimation of liquid input of Spiru
      cNO3 = -1.2*Yx1_4(3,1)*cXA0_4; % Excess of NO3 needs to avoid mineral limitation
      CL0_4 = [0;
                                                                      °8 02
                                                                               (mol/l)
                                                                      % CO2 (mol/l) : G/L equilibrium
                   fm_CO2_0*55.56/kpartN_4(2);
                                                                      % NO3 (mol/l)
                   cNO3;
                   sum(Yx1_4(4,:))/Yx1_4(3,1)*cNO3; % SO4 (mol/l)
                   Yx1_4(5,1)/Yx1_4(3,1)*cNO3];
                                                                     % PO4 (mol/l)
      % 1.3.Steady state of Spiru
      [FR0_4, X0_4, Y0_4] = stesta_4( ...
       NG_4, NL_4, NO_4, vNB_4, vNM_4, Fin_4, VL_4, Yx1_4, ...
       A2_4, B2_4, GG1_4, GG2_4, CG0_4, CL0_4, cXA0_4, ...
       FRmin_4, FRmaxc_4, fI_4, zPC_4, zCH_4, ...
       RT_4, Ea_4, Es_4, muM_4, muEPS_4, Kj_4, KjEPS_4, Fmin_4, zmin_I_4, ...
       KSNO3_4, KSSO4_4, KSPO4_4, KSPC_4);
      if (isempty(FR0_4) | isempty(X0_4))
         disp(' FR0_4 or X0_4 empty')
        break
      end
      %>2. End of iterative computation
      delta = (FRmax_4-FR0_4)/(FRmax_4);
      if (abs(delta) < 1e-2), break, end</pre>
      cXA0_4 = cXA0_4*(1+.5*delta); % with relaxation coefficient
   end
      if (isempty(FR0_4) | isempty(X0_4)), break, end
      %>3. Max production of active biomass of Spiru
      rs=[0, cXA0_4*Fin_4]; % min and max of production (g/h) of XA in Spiru
      cover_v = [0, .05, .1, .15, .2, .25]; % vector of values of 'cover'
% Local yield of Spiru
°
 _____
      Yp_4 = zeros(3,1);
      DO2 = (Y0_4(1) - CG0_4(1)) * Gin_4 + (X0_4(1) - CL0_4(1)) * Fin_4;
      Yp_4(1) = ((Y0_4(NG_4) - CG0_4(NG_4)) * Gin_4 + (X0_4(NG_4) - CG0_4(NG_4)) * Gin_4 + (X0_4(NG_4)) * Gin_4 + 
CL0_4(NG_4))*(1+Kdis_4(NG_4))*Fin_4)/DO2;
      Yp_4(2) = (X0_4(NG_4+1)-CL0_4(NG_4+1))*Fin_4/DO2;
      Yp_4(3) = X0_4(NG_4+4)*Fin_4/DO2;
% Local yield of Nitri
% =======================
      % 1.1.Gas phase (mol/l of O2 CO2 NH3 (NH3:null) from Consu only) :
      cO2 = fm_O2_0/VM_0+rO2_0/Gin_3; % O2 consumed in Consu
```

ESA-ESTEC	Overall strategy for the	MELISSA - Technical Note 54. interfacing of the HPC to the M	4 IELISSA loop – Phase II	October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 21

```
cCO2 = fm_CO2_0/VM_0+rCO2_0/Gin_3; % CO2 produced by Consu
    CG0_3 = [cO2; cCO2; 0]; % mol/1
    % 1.2.Liquid phase :
    %CL0_3 = [C_02; C_C02; C_NH3; C_NO2; C_NO3; C_PO4; C_SO4];
    cCO2 = nMan*(Yp_1(2)-Yp_1(4)*Yx_AcOH/Yp_2(2))/Fin_3; % CO2 produced by Lique and Rhodo
    cNH3 = (-Yx1_4(3,1))*cXA0_4; % NH3 necessary for NO3 needed by Spiru
    CL0_3 = [0; cCO2; cNH3]./(1+Kdis_3); % mol/l ; molecular form
    cSO4 = sum(Yx1_3(7,:)) / sum(Yx1_3(3,:))*cNH3; % mol/l (SO4 stoechiometric to NH3)
    cPO4 = sum(Yx1_3(6,:)) / sum(Yx1_3(3,:))*cNH3; % mol/l (PO4 stoechiometric to NH3)
    CL0_3 = [CL0_3; 0; spNO3_5; cPO4; cSO4];
    %1.3.Steady state of Nitri
    [X0_3, Y0_3, dX0_3] = stesta_3(
    \rm NL\_3 , \rm NG\_3 , \rm NS\_3 , \rm NB\_3 , \rm NX\_3 , \rm NO\_3 , \rm NI\_3 , \rm NV\_3 , \ldots
     Ae_3, Be_3, Ce_3, De_3, E_3, WX_3, WYG_3, WYL_3, ...
     iO2_3, iCO2_3, iNH3_3, iNO2_3, iSub_3, iXNs_3, iXNb_3, iXag_3, ...
     KlNs_3, KlNb_3, KmNs_3, KmNb_3, mumax_3, maint_3, Yx_3, Yx1_3, Ym1_3, ...
     CG0_3, CL0_3, RL_3, indG_3, indL_3);
    if isempty(X0_3)
      disp(' X0_3 empty')
      break
    end
    %1.4.Yield of substrates 02 CO2 and NH3 : Yp(1) O2 + Yp(2) CO2 + Yp(3) NH3 --> NO3
    indG = (NB_3+1)*NG_3+[1:NG_3];
                                    % indices of O2 CO2 NH3 G in output vector Y0
    indL = (NB_3+1)*(NG_3+NL_3)+[1:NG_3];% indices of O2 CO2 NH3 L in state vector X0
    indN = (NB_3+1)*(NG_3+NL_3)+NG_3+1;% indices of NO2 in state vector X0
    Dp = (Y0_3(indG)-CG0_3)*Gin_3 + (X0_3(indL)-CL0_3(1:NG_3)).*(1+Kdis_3)*Fin_3;
    Dc = ((X0_3(indN+1)-CL0_3(NG_3+2))-(X0_3(indN)-CL0_3(NG_3+1)))*Fin_3; % NO3-NO2
    Yp_3 = Dp / Dc; % conversion yield of O2 CO2 NH3 into NO3
% Computation of ksi for the following matrices AA
ksi = Yp_1(3,1) - Yp_2(1,1) / Yp_2(2,1) * Yp_1(4,1);
% Closed loop for O2 and CO2
if typloop == 1
    % Computation of active biomass Spiru 'cXA0_4' and of incoming waste ratio 'nMan'
         [ 1/Yp_4(3,1)*Fin_4, Yp_1(1,1)-ksi*Yp_3(1,1)/Yp_3(3,1);
Yp_4(1,1)/Yp_4(3,1)*Fin_4, Yp_1(2,1)-Yp_1(4,1)/Yp_2(2,1)-ksi*Yp_3(2,1)/Yp_3(3,1)];
    AA = [
   A1 = inv(AA);
   X = -A1*[r02_0+cover_p*(ri_5(1)-Yp_3(1,1)/Yp_3(3,1)*ri_5(3));
             rCO2_0+cover_p*(ri_5(2)-Yp_3(2,1)/Yp_3(3,1)*ri_5(3))];
    CXA0 \ 4 = X(1);
   nMan = X(2);
                              t sim m % results display
   plotting=0; display=1;
  if istudy == 1
  % 1. Min and max values of 'nRat' and 'nMan'
  for kk = 1:max(size(cover v))
    cover = cover_v(kk);
    for jj=1:2
    AA = [rO2r_0],
                   Yp_1(1,1)-ksi*Yp_3(1,1)/Yp_3(3,1);
         rCO2r_0, Yp_1(2,1)-Yp_1(4,1)/Yp_2(2,1)-ksi*Yp_3(2,1)/Yp_3(3,1)];
    A1 = inv(AA);
    X = -A1*[1/Yp_4(3,1)*rs(jj)+cover*(ri_5(1)-Yp_3(1,1)/Yp_3(3,1)*ri_5(3));
             Yp_4(1,1)/Yp_4(3,1)*rs(jj)+cover*(ri_5(2)-Yp_3(2,1)/Yp_3(3,1)*ri_5(3))];
    minmaxRat(kk,jj) = X(1);
   minmaxNu(kk, jj) = X(2);
   end
  end
  %if idisp, minmaxRat, minmaxNu, end
  % 2. Plotting
   plotting=1; display=0;
                               t sim m
  end
% Closed loop for O2 , CO2 and NH3
elseif typloop == 2
    Computation of active biomass Spiru 'cXA0_4', incoming waste ratio 'nMan' and 'cover'
   AA = [
                 1/Yp_4(3,1)*Fin_4,
                                                Yp_1(1,1)-ksi*Yp_3(1,1)/Yp_3(3,1),
ri_5(1)-Yp_3(1,1)/Yp_3(3,1)*ri_5(3);
         Yp_4(1,1)/Yp_4(3,1)*Fin_4,
                                                Yp 1(2,1)-Yp 1(4,1)/Yp 2(2,1)-
ksi*Yp_3(2,1)/Yp_3(3,1), ri_5(2)-Yp_3(2,1)/Yp_3(3,1)*ri_5(3);
          -Yp_3(3,1)*Yp_4(2,1)/Yp_4(3,1)*Fin_4, ksi,
ri_5(3)-Yp_3(3,1)*ri_5(4)];
   A1 = inv(AA);
```

ESA-ESTEC	Overall strategy for the	MELISSA - Technical Note 54.4 interfacing of the HPC to the M	4 IELISSA loop – Phase II	October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 22

```
X = -A1*[rO2_0; rCO2_0; 0];
   cXA0_4 = X(1);
   nMan = X(2);
   cover_p = X(3);
   plotting=0; display=1;
                             t_sim_m % results display
  if istudy == 1
 % Min and max values of 'nRat' , 'nMan' and 'cover'
   for jj=1:2
   AA = [rO2r_0],
                 Yp_1(1,1)-ksi*Yp_3(1,1)/Yp_3(3,1),
                                                                         ri_5(1)-
Yp_3(1,1)/Yp_3(3,1)*ri_5(3);
         rCO2r_0, Yp_1(2,1)-Yp_1(4,1)/Yp_2(2,1)-ksi*Yp_3(2,1)/Yp_3(3,1), ri_5(2)-
yp_3(2,1)/yp_3(3,1)*ri_5(3);
                                                                         ri 5(3)-
         Ο,
                  ksi.
Yp_3(3,1)*ri_5(4)];
   A1 = inv(AA);
   X = -A1*rs(jj)*[1/Yp_4(3,1);
                   Yp_4(1,1)/Yp_4(3,1);
                  -Yp_3(3,1)*Yp_4(2,1)/Yp_4(3,1)];
   minmaxRat(jj) = X(1);
   minmaxNu(jj) = X(2);
   minmaxCov(jj) = X(3);
   end
   if idisp, minmaxRat, minmaxNu , minmaxCov, end
 end
end
if (typloop == 1 | typloop == 2) , break, end \ Useless to pursue simulation
   % Variation rates of HPC ('cover_p' food needs of 1 man/h) :
   ry_5 = ri_5*cover_p;
\ Closed loop for O2 and NH3/NO3
if typloop == 3 % closing O2 and NH3/NO3
   Computation of active biomass Spiru 'cXA0_4', incoming waste ratio 'nMan'
               1/Yp_4(3,1)*Fin_4,
   AA = [
                                              Yp_1(1,1)-ksi*Yp_3(1,1)/Yp_3(3,1);
         -Yp_3(3,1)*Yp_4(2,1)/Yp_4(3,1)*Fin_4, ksi
                                                                               1:
   A1 = inv(AA);
   BB = [rO2_0 + ry_5(1) - Yp_3(1,1) / Yp_3(3,1) * ry_5(3);
         ry_5(3)-Yp_3(3,1)*ry_5(4)
                                                   1;
   X = -A1*BB;
   CXA0_4 = X(1);
   nMan = X(2);
   plotting=0; display=1;
                             t_sim_m % results display
  if istudy == 1
  for kk = 1:max(size(cover_v))
   cover = cover_v(kk);
   for jj=1:2
   AA = [rO2r_0],
                   Yp_1(1,1)-ksi*Yp_3(1,1)/Yp_3(3,1);
         0.
                  ksi
                                                   1:
   A1 = inv(AA);
   X = -A1*[1/Yp_4(3,1)*rs(jj)+cover*(ri_5(1)-Yp_3(1,1)/Yp_3(3,1)*ri_5(3));
           -Yp_3(3,1)*Yp_4(2,1)/Yp_4(3,1)*rs(jj)+cover*(ri_5(3)-Yp_3(3,1)*ri_5(4))];
   minmaxRat(kk,jj) = X(1);
   minmaxNu(kk, jj) = X(2);
   end
 end
 %if idisp, minmaxRat, minmaxNu, end
  % 2. Plotting
   plotting=1; display=0;
                              t sim m
 end
% Closed loop for CO2 and NH3/NO3
elseif typloop == 4 % closing CO2 and NH3/NO3
   % Computation of active biomass Spiru 'cXA0_4', incoming waste ratio 'nMan'
                                              Yp_1(2,1)-Yp_1(4,1)/Yp_2(2,1)-
   AA = [ Yp_4(1,1)/Yp_4(3,1)*Fin_4,
ksi*Yp_3(2,1)/Yp_3(3,1);
         -Yp_3(3,1)*Yp_4(2,1)/Yp_4(3,1)*Fin_4, ksi
];
   A1 = inv(AA);
   BB = [rCO2_0+ry_5(2)-Yp_3(2,1)/Yp_3(3,1)*ry_5(3);
         ry_5(3)-Yp_3(3,1)*ry_5(4)
                                                  1;
   X = -A1*BB;
   CXA0_4 = X(1);
```

ESA-ESTEC	Overall strategy for the	MELISSA - Technical Note 54.4 interfacing of the HPC to the M	ELISSA loop – Phase II	October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 23

```
nMan = X(2);
   plotting=0; display=1;
                             t_sim_m % results display
  if istudy == 1
  for kk = 1:max(size(cover_v))
    cover = cover_v(kk);
    for jj=1:2
   AA = [rC02r_0, Yp_1(2,1)-Yp_1(4,1)/Yp_2(2,1)-ksi*Yp_3(2,1)/Yp_3(3,1);
                                                                        1;
         Ο,
                   ksi
    A1 = inv(AA);
    X = -A1*[Yp_4(1,1)/Yp_4(3,1)*rs(jj)+cover*(ri_5(2)-Yp_3(2,1)/Yp_3(3,1)*ri_5(3));
           -Yp_3(3,1)*Yp_4(2,1)/Yp_4(3,1)*rs(jj)+cover*(ri_5(3)-Yp_3(3,1)*ri_5(4))];
   minmaxRat(kk,jj) = X(1);
   minmaxNu(kk, jj) = X(2);
    end
  end
  %if idisp, minmaxRat, minmaxNu, end
  % 2. Plotting
   plotting=1; display=0;
                               t_sim_m
  end
end
SIMULATION OF THE MELISSA LOOP
2
8------
%> 1. INITIALIZATION
\ensuremath{\$} Init of input of the process for the first iteration
  \ 1. O2_L CO2_L at input of the open loop (concentration in mol/l)
                                      % approximate O2_L outgoing from HPC (mol/l)
  YO2 \ 5 = 0;
  YCO2_5 = fm_CO2_0*55.56/kpartN_4(2); % expected set point of CO2_L outgoing from HPC (mol/l)
: G/L equilibrium
  % 2. L phase going into Rhodo (considered as non computable iteratively):
  YAc_2= nMan*(1-Yx_AcOH)*Yp_1(4,1)/Fin_2; % AcOH_GL outgoing from Rhodo at previous step
  initAcOH = YAc_2/(1+Kdis_2(NG_2));
  % 3. L phase going into Rhodo input :
  initNH3 = spNH3_5/(1+Kdis_2(2)); %(mol/1) NH3 GL coming from HPC output and going into L
phase of Rhodo input
  % 4. L phase going into Nitri :
  initNO2 = 1.3e-4; %(mol/l) NO2 outgoing from Nitri (value deduced from previous simulations)
  \% 5. SO4 PO4 at input of the open loop (concentration in mol/l)
  qS_2=-Yx1_2(4)/Yx1_2(3)*Yp_1(4,1)*nMan;
                                                                  % consumption of Rhodo
  qS_3=-Yxl_3(7,1)/Yxl_3(2,1)*Yp_3(2,1)/Yp_3(3,1)*ksi*nMan*share2; % consumption of Nitri
  qS_4=sum(Yx1_4(4,:))/Yx1_4(2,1)*Yp_4(1,1)/Yp_4(3,1)*cXA0_4*Fin_4;% consumption of Spiru and
HPC
                                                                  % consumption of HPC
  qS_5=ry_5(5);
  qP_2=-Yx1_2(5)/Yx1_2(3)*Yp_1(4,1)*nMan;
                                                                  % consumption of Rhodo
  qP_3=-Yx1_3(6,1)/Yx1_3(2,1)*Yp_3(2,1)/Yp_3(3,1)*ksi*nMan*share2; % consumption of Nitri
  qP_4=Yx1_4(5,1)/Yx1_4(2,1)*Yp_4(1,1)/Yp_4(3,1)*cXA0_4*Fin_4;
                                                                 % consumption of Spiru and
HPC
                                                                  % consumption of HPC
  qP_5=ry_5(6);
  D_S = qS_2+qS_3+qS_4+qS_5; % (mol/h) total SO4 consumed in the open loop
  D_P = qP_2+qP_3+qP_4+qP_5; % (mol/h) total PO4 consumed in the open loop
  initLiqueL = [spS04_5;spP04_5]-[D_S;D_P]/Fin_1; % (mol/1) S04 P04 at input of Lique
  % 6. Addition rate of CO2 G (mol/h) at HPC input if necessary
 if typloop == 3 % closing O2 and NH3/NO3
 add02=0;
  crit = rCO2_0 + (Yp_1(2,1)-Yp_1(4,1)/Yp_2(2,1))*nMan -
Yp_3(2,1)/Yp_3(3,1)*(ksi*nMan+ry_5(3))
        + Yp_4(1,1)/Yp_4(3,1)*cXA0_4*Fin_4 + ry_5(2); % global variation in the open loop
  if crit < 0
     addCO2 = -1.5*crit; % addition of CO2 in excess in first iterations to prevent C
limitation
  else
   addCO2 = -.5*crit; % removing CO2 partly
  end
  % 7. Supply rate of O2 G (mol/h) at HPC input if necessary
 elseif typloop == 4 % closing CO2 and NH3/NO3
    addCO2=0;
    crit = r02_0 + Yp_1(1,1)*nMan - Yp_3(1,1)/Yp_3(3,1)*(ksi*nMan+ry_5(3)) ...
           + 1/Yp_4(3,1)*cXA0_4*Fin_4 + ry_5(1); % global variation in the open loop
    addO2 = -crit; % addition of O2 exactly as needed
 end
% Computation of 'share2', 'Fin_3' and 'Fin_4'
```

ESA-ESTEC	Overall strategy for the	MELISSA - Technical Note 54. interfacing of the HPC to the M	4 IELISSA loop – Phase II	October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 24

```
ksi = Yp_1(3,1)-Yp_2(1,1)/Yp_2(2,1)*Yp_1(4,1);
   qNH3 = nMan*ksi;
                                            % estimated NH3 flow rate outgoing from Rhodo
   share2 = 1 + ry_5(3)/qNH3; % sharing ratio of liquid at output of compart 2 (Rhodo) towards
Nitri
   Fin_3 = Fcirc*share2;% liquid flow rate through Nitri(1/h)
   Fin_4 = Fin_3; % liquid flow rate through Spiru(1/h)
% Init of spy variables
   Yp_2p=Yp_2;Yp_3p=Yp_3;Yp_4p=Yp_4;Yp_5p=ri_5(2:NG_5+1)/ri_5(1);
% Initializing the input of the system to solve
   EE = [CXA0 4; nMan];
%> 2. ITERATIVE COMPUTATION
for iter = 1:niter
   % 1. Simulation of the process : open loop of Melissa
   8 -----
             [CG0_0, Y0_0, Y0_1, CG0_2, CL0_2, FR0_2, X0_2, Y0_2, ...
               CG0_3, CL0_3, X0_3, Y0_3, CG0_4, CL0_4, FR0_4, X0_4, Y0_4, CG0_5, CL0_5, Y0_5, ry_5]
   simpro(EE, fm_O2_0, fm_CO2_0, rO2_0, rCO2_0, initNH3, initNO2, initAcOH, initLiqueL, ...
              addCO2, addO2, Yx_AcOH, YO2_5, YCO2_5, spNO3_5, share2, cover_p);
   if idisp
      CG0_5p=[CG0_5p,CG0_5]
      CL0_5p=[CL0_5p,CL0_5]
      Y0_5p=[Y0_5p,Y0_5]
   end
   if (isempty(FR0_2) | isempty(FR0_4) | isempty(Y0_5)), break, end
   % 2. Identification : yields of Rhodo, Nitri and Spiru
   % 2.1. Rhodo: Yield of CO2 and NH3 : Yp(1) NH3 + Yp(2) AcOH --> Yp(3) CO2
   ind=1:NG_2;
   DC = (Y0_2(ind)-CG0_2)*Gin_2 + (X0_2(ind)-CL0_2(ind)).*(1+Kdis_2)*Fin_2; % CO2 NH3 AcOH
   Yp_2(1:2,1) = DC(2:3)/DC(1);
   % 2.2. Nitri: Yield of O2 CO2 and NH3 : Yp(1) O2 + Yp(2) CO2 + Yp(3) NH3 --> NO3
   indG = (NB_3+1)*NG_3+[1:NG_3];
                                                           % indices of O2 CO2 NH3 G in output vector Y0
   indL = (NB_3+1)*(NG_3+NL_3)+[1:NG_3];% indices of O2 CO2 NH3 L in state vector X0
   indN = (NB_3+1)*(NG_3+NL_3)+NG_3+1; indices of NO2 in state vector X0
   Dp = (Y0_3(indG)-CG0_3)*Gin_3 + (X0_3(indL)-CL0_3(1:NG_3)).*(1+Kdis_3)*Fin_3;
   Dc = ((X0_3(indN+1)-CL0_3(NG_3+2))-(X0_3(indN)-CL0_3(NG_3+1)))*Fin_3; % NO3-NO2
   Yp_3 = Dp / Dc; % conversion yield of O2 CO2 NH3 into NO3
   % 2.3. Spiru: Yield of CO2 and NO3 : Yp(1) CO2 + Yp(2) NO3 --> O2 + Yp(3) XA
   DO2 = (YO_4(1) - CGO_4(1)) * Gin_4 + (XO_4(1) - CLO_4(1)) * Fin_4;
   Yp_4(1) = ((Y0_4(NG_4) - CG0_4(NG_4)) * Gin_4 + (X0_4(NG_4) - CG0_4(NG_4)) * Gin_4 + (X0_4(NG_4)) * Gin_4 + (X0_4(NG_
CL0_4(NG_4))*(1+Kdis_4(NG_4))*Fin_4)/DO2; % CO2
   Yp_4(2) = (X0_4(NG_4+1))-CL0_4(NG_4+1))*Fin_4/D02; % conversion yield of NO3
   Yp_4(3) = X0_4(NG_4+4)*Fin_4/DO2;
                                                                                 % production yield of XA
   % 2.4. HPC: Yield of CO2 NH3 and NO3 : Yp(1) CO2 + Yp(2) NH3 + Yp(3) NO3 --> O2
              (iterative identification not necessary because yields of HPC are constant)
   if idisp
   DO2 = (Y0_5(1) - CG0_5(1)) * Gin_5 + (Y0_5(NG_5+1) - CL0_5(1)) * Fin_5;
   Yp_5(1:2,1) = ((Y0_5(2:NG_5)-CG0_5(2:NG_5))*Gin_5 + (Y0_5(NG_5+[2:NG_5])-
CL0_5(2:NG_5)).*(1+Kdis_5(2:NG_5))*Fin_5)/DO2; % CO2 NH3
   Yp_5(3,1) = (Y0_5(2*NG_5+1)-CL0_5(NG_5+1))*Fin_5/DO2; % NO3
   end
   if idisp
      Yp_2p=[Yp_2p,Yp_2]
      Yp_3p=[Yp_3p,Yp_3]
      Yp_4p=[Yp_4p,Yp_4]
      Yp_5p=[Yp_5p,Yp_5]
   end
   % 3. Computation of the output of the identified model (for checking or debugging)
   8 -----
   % 3.1. Screen display
   if idisp
      disp(['iter=',num2str(iter)])
      ri 5 = ry 5/cover p;
      plotting=0; display=1;
                                                 t_sim_m % results display
      p602=lambda*(Y0_5(1)-fm_02_0/VM_0 )*Gin_5 % correction of 02 variation
      p6NO3=lambda*(Y0_5(2*NG_5+1)-spNO3_5 )*Fin_5 % correction of NO3 variation
      pause
```

ESA-ESTEC	Overall strategy for the	MELISSA - Technical Note 54.4 interfacing of the HPC to the M	I IELISSA loop – Phase II	October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 25

```
end
  % 3.2. Saving estimations on file
  ksi = Yp_1(3,1) - Yp_2(1,1) / Yp_2(2,1) * Yp_1(4,1);
  Tvar(iter)=iter;
  initNH3t(iter,:) = initNH3;
  initNO2t(iter,:) = initNO2;
  initAcOHt(iter,:) = initAcOH;
  addCO2t(iter,:) = addCO2;
  add02t(iter,:) = add02;
  evar02_1(iter,:) = nMan*Yp_1(1,1);
  %evar02_3(iter,:) = - Yp_3(1,1)/Yp_3(3,1)*(ksi*nMan+ry_5(3));
  evar02_3(iter,:) = - Yp_3(1,1)/Yp_3(3,1)*ksi*nMan*share2;
  evar02_4(iter,:) = cXA0_4/Yp_4(3,1)*Fin_4;
  evar02_5(iter,:) = ry_5(1);
  evarCO2_1(iter,:) = nMan*Yp_1(2,1);
  evarCO2_2(iter,:) = -nMan*Yp_1(4,1)/Yp_2(2,1);
  %evarCO2_3(iter,:) = -Yp_3(2,1)/Yp_3(3,1)*(ksi*nMan+ry_5(3));
  evarCO2_3(iter,:) = -Yp_3(2,1)/Yp_3(3,1)*ksi*nMan*share2;
  evarCO2_4(iter,:) = cXA0_4*Yp_4(1,1)/Yp_4(3,1)*Fin_4;
  evarNH_1(iter,:) = nMan*Yp_1(3,1);
  evarNH_2(iter,:) = -nMan*Yp_1(4,1)*Yp_2(1,1)/Yp_2(2,1);
  evarNH_3(iter,:) = -Yp_3(3,1)*(cXA0_4*Yp_4(2,1)/Yp_4(3,1)*Fin_4 + ry_5(4));
  evarNO_3(iter,:) = evarNH_3(iter,:)/Yp_3(3,1);
  evarNO_4(iter,:) = cXA0_4*Yp_4(2,1)/Yp_4(3,1)*Fin_4;
  evarNH_5(iter,:) = ry_5(3);
  evarNO_5(iter,:) = ry_5(4);
  evarS_2(iter,:)=-Yx1_2(4)/Yx1_2(3)*Yp_1(4,1)*nMan;
                                                                               % consumption of
Rhodo
  evarS_3(iter,:)=-Yx1_3(7,1)/Yx1_3(2,1)*Yp_3(2,1)/Yp_3(3,1)*ksi*nMan*share2; % consumption of
Nitri
 evarS_4(iter,:)=sum(Yx1_4(4,:))/Yx1_4(2,1)*Yp_4(1,1)/Yp_4(3,1)*cXA0_4*Fin_4;% consumption of
Spiru and HPC
 evarS_5(iter,:)=ry_5(5);
                                                                               % consumption of
HPC
  evarP_2(iter,:)=-Yx1_2(5)/Yx1_2(3)*Yp_1(4,1)*nMan;
                                                                               % consumption of
Rhodo
 evarP_3(iter,:)=-Yx1_3(6,1)/Yx1_3(2,1)*Yp_3(2,1)/Yp_3(3,1)*ksi*nMan*share2; % consumption of
Nitri
  evarP_4(iter,:)=Yx1_4(5,1)/Yx1_4(2,1)*Yp_4(1,1)/Yp_4(3,1)*cXA0_4*Fin_4;
                                                                               % consumption of
Spiru and HPC
 evarP_5(iter,:)=ry_5(6);
                                                                               % consumption of
HPC
  % Global variation of O2 and CO2 from Consu input to HPC output
  svareO2t(iter,:) = rO2_0 + evarO2_1(iter,:) + evarO2_3(iter,:) ...
                     + evar02_4(iter,:) + ry_5(1); % global variation of 02
  svareCO2t(iter,:) = rCO2_0 + evarCO2_1(iter,:) + evarCO2_2(iter,:) + evarCO2_3(iter,:) ...
                      + evarCO2_4(iter,:) + ry_5(2); % global variation of CO2
  % Saving variables
  addSO4t(iter,:) = -D_S;
  addPO4t(iter,:) = -D_P;
  share2t(iter,:) = share2;
  Fin_3t(iter,:) = Fin_3;
  Fin_4t(iter,:) = Fin_4;
  YO2_5t(iter,:) = YO2_5;
  YCO2_5t(iter,:) = YCO2_5;
  FR0_2t(iter,:) = FR0_2;
  FR0_4t(iter,:) = FR0_4;
  nMant(iter,:) = nMan;
  dG_0t(iter,:) = CG0_0';
  cs_0(iter,:) = Y0_0';
  cs_1(iter,:) = Y0_1';
  dG_2t(iter,:) = CG0_2';
  dL_2t(iter,:) = CL0_2';
  cs_2(iter,:) = Y0_2';
  dG_3t(iter,:) = CG0_3';
  dL_3t(iter,:) = CL0_3';
  cs_3(iter,:) = Y0_3';
  dG_4t(iter,:) = CG0_4';
  dL_4t(iter,:) = CL0_4';
  cs_4(iter,:) = Y0_4';
  dG_5t(iter,:) = CG0_5';
  dL_5t(iter,:) = CL0_5';
```

ESA-ESTEC	Overall strategy for the	MELISSA - Technical Note 54. interfacing of the HPC to the M	4 IELISSA loop – Phase II	October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 26

```
cs_5(iter,:) = Y0_5';
  % 4. Inputs of the process for the next iteration
  & _____
  % 4.1. Active biomass Spiru and ratio of incoming waste
    % Computation of ksi for the following matrices AA
   ksi = Yp_1(3,1)-Yp_2(1,1)/Yp_2(2,1)*Yp_1(4,1);
   if typloop == 3 % closing O2 and NH3/NO3
    if 0 % algorithm where 'share2' is implicit
    AA = [
                  1/Yp_4(3,1)*Fin_4,
                                                  Yp_1(1,1)-ksi*Yp_3(1,1)/Yp_3(3,1);
          -Yp_3(3,1)*Yp_4(2,1)/Yp_4(3,1)*Fin_4, ksi,
    A1 = inv(AA);
    BB = [rO2_0 + ry_5(1) - Yp_3(1,1) / Yp_3(3,1) * ry_5(3);
         ry_5(3)-Yp_3(3,1)*ry_5(4)
                                                       ];
    else % algorithm where 'share2' is explicit (more rigorous)
    AA = [ 1/Yp_4(3,1)*Fin_4, Yp_1(1,1)-ksi*share2*Yp_3(1,1)/Yp_3(3,1);
          -Yp_3(3,1)*Yp_4(2,1)/Yp_4(3,1)*Fin_4, ksi,
                                                                                             1;
    A1 = inv(AA);
    BB = [rO2_0 + ry_5(1);
          ry_5(3)-Yp_3(3,1)*ry_5(4)] + ...
          lambda * [(Y0_5(1)-fm_O2_0/VM_0 )*Gin_5; % correction of O2 variation
                    (Y0_5(2*NG_5+1)-spNO3_5 )*Fin_5]; % correction of NO3 variation
    end
   elseif typloop == 4 % closing CO2 and NH3/NO3
    AA = [ Yp_4(1,1)/Yp_4(3,1)*Fin_4,
                                                 Yp_1(2,1)-Yp_1(4,1)/Yp_2(2,1)-
ksi*Yp_3(2,1)/Yp_3(3,1);
         -Yp_3(3,1)*Yp_4(2,1)/Yp_4(3,1)*Fin_4, ksi
1;
    A1 = inv(AA);
   BB = [rCO2_0+ry_5(2)-Yp_3(2,1)/Yp_3(3,1)*ry_5(3); ry_5(3)-Yp_3(3,1)*ry_5(4) ]
          ry_5(3)-Yp_3(3,1)*ry_5(4) ] + ...
lambda * [(Y0_5(2)-fm_CO2_0/VM_0)*Gin_5; % correction of CO2 variation
                    (Y0_5(2*NG_5+1)-spNO3_5 )*Fin_5]; % correction of NO3 variation
   end
    EE = -A1*BB;
    CXA0_4 = EE(1);
    nMan = EE(2);
    % Computation of 'share2', 'Fin_3' and 'Fin_4'
    share2 = 1 + ry_5(3)/nMan/ksi; % sharing ratio of liquid at output of compart 2 (Rhodo)
towards Nitri
    Fin_3 = Fcirc*share2;% liquid flow rate through Nitri(1/h)
    Fin_4 = Fin_3; % liquid flow rate through Spiru(1/h)
   i_sim_3
   i_sim_4
  % 4.2. L phase going into Lique : SO4 PO4 at input of the open loop (concentration in mol/l)
  indL = (NB_3+2)*NG_3+(NB_3+2)*(NG_3+NL_3);% index of SO4 in output vector Y0_3
 D_S=Fin_2*(Y0_2(2*NG_2+1) - CL0_2(NG_2+1)) + ... % variation of SO4 in Rhodo
Fin_3*(Y0_3(indL) - CL0_3(NG_3+NL_3)) + ... % variation of SO4 in Nitri
      Fin_{4}^{(Y0_{4}(2*NG_{4}+2))} - CL0_{4}(NG_{4}+2)) + \dots
                                                     % variation of SO4 in Spiru
% variation of SO4 in HPC
      Fin_5*(Y0_5(2*NG_5+2) - CL0_5(NG_5+2));
 D_P=Fin_2*(Y0_2(2*NG_2+NL_2) - CL0_2(NG_2+NL_2)) + ... % variation of PO4 in Rhodo
      Fin_3*(Y0_3(indL-1) - CL0_3(NG_3+NL_3-1)) + ... % variation of PO4 in Nitri
      Fin_4*(Y0_4(2*NG_4+NL_4) - CL0_4(NG_4+NL_4)) + ... % variation of PO4 in Spiru
Fin_5*(Y0_5(2*NG_5+NL_5) - CL0_5(NG_5+NL_5)); % variation of PO4 in HPC
  initLiqueL = [spS04_5; spP04_5] - [D_S; D_P]/Fin_1;
 % 4.3. L phase going into Rhodo :
 if 1 % computing 'initAcOH' from estimation (stable convergency)
 YAc_2= EE(2)*(1-Yx_AcOH)*Yp_1(4,1)/Fin_2; % AcOH_GL outgoing from Rhodo at previous step
  initAcOH = YAc_2/(1+Kdis_2(NG_2)); % (mol/1)
else % computing 'initAcOH' from value at previous step ==> small oscillations
 initAcOH = Y0_2(NG_2)*Gin_2/Fin_2/(1+Kdis_2(NG_2)) + Y0_2(2*NG_2);
 end
 % 4.4. L phase going into Rhodo input :
  % computing 'initNH3' from value at previous step
 initNH3 = (Y0_5(NG_5)*Gin_5 + spNH3_5*Fin_5) / ...
            ((1+Kdis_2(2))*Fin_2); % % (mol/1) NH3 GL coming from HPC output and going into L
phase of Rhodo input
 % 4.5. L phase going into Nitri input :
  indN2 = (NB_3+2)*NG_3+(NB_3+1)*(NG_3+NL_3)+NG_3+1;% index of NO2 in output vector
 initNO2 = Y0_3(indN2);
                              % % (mol/l) NO2 outgoing from Nitri at previous step
   4.6. O2_L CO2_L at input of the open loop (concentration in mol/l)
 Y02_5 = fm_02_0/VM_0/Y0_5(1)*Y0_5(NG_5+1); % expected set point of 02_L outgoing from HPC
```

ESA-ESTEC	Overall strategy for the	MELISSA - Technical Note 54.4 interfacing of the HPC to the M	ELISSA loop – Phase II	October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 27

```
YCO2_5 = fm_CO2_0/VM_0/Y0_5(2)*Y0_5(NG_5+2)*(1+Kdis_5(2))/(1+Kdis_2(1)); % expected set
point of CO2_L outgoing from HPC
  % 4.7. Supply rate of CO2 G (mol/h) at HPC input if necessary
 if typloop == 3 % closing O2 and NH3/NO3
  add02=0;
  crit = rCO2_0 + (Yp_1(2,1)-Yp_1(4,1)/Yp_2(2,1))*nMan -
Yp_3(2,1)/Yp_3(3,1)*(ksi*nMan+ry_5(3))
         + Yp_4(1,1)/Yp_4(3,1)*cXA0_4*Fin_4 + ry_5(2); % global variation in the open loop
  if crit < 0</pre>
    if iter < 5
      addCO2 = -1.5*crit; % addition of CO2 in excess in first iterations to prevent C
limitation
    else
      addCO2 = -crit; % addition of CO2 exactly as needed
    end
  else
    addCO2 = -.5*crit; % removing CO2 partly
  end
  % 4.8. Supply rate of O2 G (mol/h) at HPC input if necessary
 elseif typloop == 4 % closing CO2 and NH3/NO3
    addCO2=0;
    crit = r02_0 + Yp_1(1,1)*nMan - Yp_3(1,1)/Yp_3(3,1)*(ksi*nMan+ry_5(3)) ...
           + 1/Yp_4(3,1)*cXA0_4*Fin_4 + ry_5(1); % global variation in the open loop
    addO2 = -crit; % addition of O2 exactly as needed
 end
  disp(['Iteration ',num2str(iter),' finished'])
end
if (isempty(FR0_2) | isempty(FR0_4) | isempty(Y0_5)),FR0_2, FR0_4, Y0_5, break, end
disp(' === End of iteration === ')
% Lique (1) :
% CG0 = []
% CL0 = [Faeces Urea]
% Y0 = [H2 CO2 NH3 AcOH BuOH SO4 PO4]
% Rhodo (2) :
% CG0 = [CO2 NH3 AcOH]
% CL0 = [CO2 NH3 AcOH SO4 PO4]
% X0 = [CO2 NH3 AcOH SO4 PO4 XA]
% Nitri (3) :
% CG0 = [O2 CO2 NH3]
% CL0 = [O2 CO2 NH3 NO2 NO3 PO4 SO4]
% X0 = [O2 CO2 NH3 NO2 NO3 PO4 SO4 XA_NS XA_Nb XG_NS XG_Nb] for each tank
% Spiru (4) :
% CG0 = [O2 CO2]
% CL0 = [02 CO2 NO3 SO4 PO4]
% X0 = [O2 CO2 NO3 SO4 PO4 XA XV EPS PC CH]
% HPC (5) :
% CG0 = [O2_G CO2_G NH3_G]
% CL0 = [O2_L CO2_L NH3_L NO3 SO4 PO4]
% X0 = [02_G CO2_G NH3_G O2_L CO2_L NH3_L NO3 SO4 PO4 Tomato Rice ...]
% Nitri:
          Indice in state vector
                                          Compound
2
                                          02
          (i-1)*NE + 1
                                                in Liquid phase
8
          (i-1)*NE + 2
응
                                          C02
                                                in Liquid phase
          (i-1)*NE + NG
                                          NH3
                                                in Liquid phase
°
å
          (i-1)*NE + NG + 1
                                          NO2
          (i-1)*NE + NG + 2
                                          NO3
%
% Outputs
        The output vector is composed of the concentrations of the compounds
8
8
        of the column in gas and liquid phases.
응
        Indices of the compounds in the state vector :
°
         For a tank i (i between 1 and NB+2)
응
          Indice
                                          Compound
          (i-1)*NG + 1
                                          02
                                                in Gas phase
%
          (i-1)*NG + 2
8
                                          C02
                                                in Gas phase
Ŷ
          (i-1)*NG + 3
                                          NH3
                                                in Gas phase
```

ESA-ESTEC	Overall strategy for the	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II		
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 28

```
6.2. Simulation of the open extended MELISSA loop
%
         Connected compartments 0,1,2,3,4A and 4B
                                                                                 *
%
         Version 3.0
                         October 2001
                                                                                 *
%
                                                                                 *
%
        simpro.m
                     Simulation of the extended MELISSA loop
%
                     (HPC included)
%
                     Open loop and Steady state
%
%*******
               ********
function [CG0_0, Y0_0, Y0_1, CG0_2, CL0_2, FR0_2, X0_2, Y0_2, ...
        CG0_3, CL0_3, X0_3, Y0_3, CG0_4, CL0_4, FR0_4, X0_4, Y0_4, CG0_5, CL0_5, Y0_5, ri_5]
 simpro(EE, fm_O2_0, fm_CO2_0, rO2_0, rCO2_0, initNH3, initNO2, initAcOH, initLiqueL, ...
        addCO2, addO2, Yx_AcOH, YO2_5, YCO2_5, spNO3_5, share2, cover)
global VM_0 Gin_0
global Gin_1 Fin_1 NG1_1 NG_1 NL_1 Kdis_1 rKdis_1 Yp_1p
global Gin_2 Fin_2 NG_2 NL_2 NO_2 vNB_2 vNM_2 VL_2 Yx1_2 Kdis_2 KSSO4_2 ...
  A2_2 B2_2 GG1_2 GG2_2
  FRmin_2 FRmax_2 fI_2 RT_2 Ea_2 Es_2 muM_2 KJ_2 EpsJ_2 q_rhod_2 zmin_I_2
global Gin_3 Fin_3 NL_3 NG_3 NS_3 NB_3 NX_3 NO_3 NI_3 NV_3 ...
  Ae_3 Be_3 Ce_3 De_3 E_3 WX_3 WYG_3 WYL_3 ..
   iO2_3 iCO2_3 iNH3_3 iNO2_3 iSub_3 iXNs_3 iXNb_3 iXag_3
  KlNs_3 KlNb_3 KmNs_3 KmNb_3 mumax_3 maint_3 Yx_3 Yx1_3 Ym1_3
                                                                  . . .
  RL_3 indG_3 indL_3 Kdis_3
global Fin_4 NG_4 NL_4 NO_4 vNB_4 vNM_4 VL_4 Yx1_4 Kdis_4 ...
  A2_4 B2_4 GG1_4 GG2_4

      FRmin_4
      FRmax_4
      FRmaxc_4
      fI_4
      zPC_4
      zCH_4
      ...

      RT_4
      Ea_4
      Es_4
      muM_4
      muEPS_4
      Kj_4
      KjEPS_4
      Fmin_4
      zmin_I_4
      ...

  KSNO3_4 KSSO4_4 KSPO4_4 KSPC_4
global Gin_5 Fin_5 NG_5 NL_5 NS_5 VG_5 VL_5 Yxle_5 Yxlw_5 Kdis_5 ...
  Diete_5 Dietw_5 A2_5 B2_5 ind_3u5
global idisp
%>>> CONSU
% Concentrations in the incoming Gas of Consu
CG0_0 = [fm_O2_0; fm_CO2_0]/VM_0; % mol/l of O2 CO2 going into Consu
% Initial output vector of Consu (static state)
§ _____
 Y0_0 = CG0_0 + [r02_0; rC02_0]/Gin_0;
%>>> LIOUE
% Concentrations in the incoming Gas and Liquid flows of Lique
%1. Gas phase : inert gas
 %2. Liquid phase :
  %cFaec_0 = qFaec_0/Fin_1; % mol/1
 %cUrea_0 = qUrea_0/Fin_1; % mol/1
 %cSO4_0 = qSO4_0/Fin_1; % mol/l
%cPO4_0 = qPO4_0/Fin_1; % mol/l
% Output vector of Lique (static state)
 _____
 Y_1 = EE(2)*Yp_1p; % (mol/h): production rate of H2 CO2 NH3 AcOH BuOH
 NY = NG1_1+2*NG_1+NL_1;
 NY1= NG1_1+2*NG_1;
  % Gas concentration in mol/l (H2 and CO2 are totaly under Gas phase)
 Y0_1 = zeros(NY,1);
 Y0_1(1:NG1_1) = Y_1(1:NG1_1)/Gin_1; % output conc. of H2 in Gas (mol/l)
 % Liquid concentration in mol/l (NH3 and AcOH are totaly under Liquid phase)
  % Butyric acid is transformed into acetic acid (with fictitious consumption of O2 for mass
balance)
 Y0_1(NY1+[1:2]) = Y_1(NY1+[1:2])/Fin_1./(1+Kdis_1(1:2)); % conc. in mol/l of CO2 NH3 molec.
form
 Y0_1(NY1+3) = (Y_1(NY1+3)+2*Y_1(NY1+4))/Fin_1/(1+Kdis_1(3)); % conc. in mol/l of AcOH molec.
form
 Y0_1(NY1+5:NY) = initLiqueL; % conc. SO4 PO4 in mol/l
 Y0_1(NY1+4) = 0; % conc. in mol/l of BuOH total (transformed into AcOH)
```

ESA-ESTEC	l Overall strategy for the	MELISSA - Technical Note 54.4 interfacing of the HPC to the M	ELISSA loop – Phase II	October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 29

```
%>>> RHODO
% Initial concentrations in the incoming Gas and Liquid flows of Rhodo
<u>%</u> _____
 %1. Gas phase (loop of inert gas) :
 fm_CO2_2 = 0; % no CO2 (molar fraction)
 fm_NH3_2 = 0;
               % no NH3
                        (molar fraction)
              % no AcOH (molar fraction)
 fm Ac 2 = 0;
 CG0_2 = [fm_CO2_2; fm_NH3_2; fm_Ac_2] / VM_0; % mol/1
 %2. Liquid phase :
 %CL0_2 = [cC02_0; cNH3_0; cAc_0; cS04_0; cP04_0] % mol/1
 ind = [NY1+1:NY1+3,NY1+5:NY];
 CL0_2 = Y0_1(ind).*rKdis_1; % mol/l of the molecular form CO2 NH3 AcOH
 CL0_2(1) = CL0_2(1) + YCO2_5; % addition of CO2 coming from HPC output
 CL0_2(2) = CL0_2(2) + initNH3; % NH3 GL coming from HPC output and going into L phase of
Rhodo input
 CL0_2(NG_2) = CL0_2(NG_2) + initAcOH; % AcOH at L Rhodo input
% Initial concentration of biomass in Rhodo (to consume 'Yx_AcOH' part of AcOH load)
8 -----
 cX0_2 = -CL0_2(NG_2)*(1+Kdis_2(NG_2))/Yx1_2(NG_2)*Yx_AcOH; % g/l
% Initial light flux and state vector of Rhodo (steady state)
[FR0_2, X0_2, Y0_2] = stesta_2(..
  NG_2, NL_2, NO_2, vNB_2, vNM_2, VL_2, Fin_2, Yx1_2, KSSO4_2, ...
  \texttt{A2\_2, B2\_2, GG1\_2, GG2\_2, CG0\_2, CL0\_2, cX0\_2, .}
  FRmin_2, FRmax_2, fI_2, RT_2, Ea_2, Es_2, muM_2, KJ_2, EpsJ_2, q_rhod_2, zmin_I_2);
 1.\ CO2 NH3 in G phase of Rhodo going into L phase of Rhodo :
 X0_2(1:2) = X0_2(1:2) + (Y0_2(1:2)*Gin_2/Fin_2)./(1+Kdis_2(1:2)); % modif of state vector
 %2. Modification of output vector
 Y0_2(1:2) = zeros(2,1);
 Y0_2(NG_2+[1:2]) = X0_2(1:2);
                                                      % modif of output vector
%>>> NITRI
% Concentrations in the incoming Gas and Liquid flows of Nitri
& _____
 $1. Gas phase (02 CO2 from Consu, 02 used for H2 and butyric acid transformation) :
 CG0_3 = [Y0_0; 0]; % mol/l of O2 CO2 NH3 (NH3:null) from Consu
 CG0_3(1) = CG0_3(1) - (Y_1(1)/2 + Y_1(NY1+4))/Gin_3; %02 used for H2 and butyric acid
transformation
 %2. Liquid phase (from Rhodo):
 %CL0_3 = [C_02_0; C_C02_0; C_NH3_0; C_N02_0; C_N03_0; C_P04_0; C_S04_0];
 CL0_3 = link2_3(X0_2)';
                       % function of expected set point of O2_L at Spiru output
 CL0_3(1) = YO2_5;
 CL0_3(NG_3+2) = spNO3_5*Fin_5/Fin_3; % set point of NO3 at HPC output
 CL0_3(NG_3+1) = CL0_3(NG_3+1) + initNO2; % NO2 from previous step
% Initial state and output vectors of Nitri (steady state)
 _____
 if idisp, CG0_3,CL0_3,end
 [X0_3, Y0_3, dX0_3] = stesta_3( ...
  NL_3, NG_3, NS_3, NB_3, NX_3, NO_3, NI_3, NV_3, ...
  Ae_3, Be_3, Ce_3, De_3, E_3, WX_3, WYG_3, WYL_3, ..
  iO2_3, iCO2_3, iNH3_3, iNO2_3, iSub_3, iXNs_3, iXNb_3, iXag_3, ...
  KlNs_3, KlNb_3, KmNs_3, KmNb_3, mumax_3, maint_3, Yx_3, Yx1_3, Ym1_3, ...
  CG0_3, CL0_3, RL_3, indG_3, indL_3);
 if isempty(X0_3), break, end
 if idisp,X0_3p = [X0_3(indL_3);X0_3(indL_3(3)+1);X0_3(indL_3(3)+2)],end
%>>> SPIRU
% Initial concentrations in the incoming Gas and Liquid flows of Spiru
CGL0 = link3_4(Y0_3); % G and L from Nitri
 %1. Gas phase :
 CG0_4 = CGL0(1:NG_4);
                      % mol/1
 %2. Liquid phase [02 CO2 NO3 SO4 PO4]
 CL0_4 = CGL0(NG_4+1:2*NG_4+NL_4); % mol/1
% Initial light flux and state vector of Spiru (steady state)
 if idisp, CG0_4,CL0_4,end
 [FR0_4, X0_4, Y0_4] = stesta_4( ...
  NG_4, NL_4, NO_4, vNB_4, vNM_4, Fin_4, VL_4, Yx1_4, ...
  A2_4, B2_4, GG1_4, GG2_4, CG0_4, CL0_4, EE(1), ...
  FRmin_4, FRmaxc_4, fI_4, zPC_4, zCH_4, ...
```

ESA-ESTEC	Overall strategy for the	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II		
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 30

```
RT_4, Ea_4, Es_4, muM_4, muEPS_4, Kj_4, KjEPS_4, Fmin_4, zmin_I_4, ...
 KSNO3_4, KSSO4_4, KSPO4_4, KSPC_4);
if (isempty(FR0_4) | isempty(X0_4)), break,
                                            end
 if idisp, X0_4, FR0_4, end
%>>> HPC
% Concentrations in the incoming Gas and Liquid flows of HPC
%1. Gas phase [O2 CO2 NH3]:
 indN1 = (NB_3+2)*NG_3; % index of NH3 G in output vector of Nitri
 %CG0_5 = [Y0_4(1)+add02/Gin_5;Y0_4(NG_4)+addC02/Gin_5;Y0_3(indN1)]; % 02 CO2 NH3
 CG0_5 = [Y0_4(1:NG_4)+[add02;addC02]/Gin_5;Y0_3(indN1)]; % 02 CO2 NH3
 %2. Liquid phase [O2 CO2 NH3 NO3 SO4 PO4]
 CL0_5 = link245(X0_2,Y0_3,X0_4,share2,NG_2,Kdis_2,...
               NG_3, ind_3u5, Kdis_3, NG_4, NL_4, Kdis_4, NG_5, Kdis_5);
% Initial state and variation rates vectors of HPC (steady state)
if idisp, CG0_5,CL0_5,end
 [X0_5, ri_5] = stesta_5(...
    NG_5, NL_5, NS_5, VG_5, VL_5, Fin_5, Yx1e_5, Yx1w_5, ...
    Diete_5, Dietw_5, cover, A2_5, B2_5, CG0_5, CL0_5);
 Y0_5=X0_5;
 if idisp, Y0_5, end
```

6.3. Parameters of the compartments

```
*
%
       Consumer compartment (static behaviour)
                                                                     *
%
       Version 2
                    October 2001
                                                                     *
%
                                                                     *
%
       Data according to TN 54.3
                                                                     *
%
       i_sim_0.m : Initialization of the simulation
                                                                     *
%
                                                                     *
%
°
arret = 0;
% General parameters of the simulated process
2 ____
NG1= 2; % number of mono-phase substrates in the Gas phase : 02, CO2
% Parameters of the consumer compartment
8 -----
Gin = Gin_4; % incoming gas volumetric rate (1/h)
rCO2r = .04; % (mol/h) CO2 production rate for 1 rat (according to TN47.3 p.8 by UAB)
rO2r = -.0445; % (mol/h) O2 consumption rate for 1 rat (according to TN47.3 p.8 by UAB)
Temp = 293; % K
VM = 22.4 * Temp / 273; % molar volume of perfect gas (1/mol)
% Saving the specific variables of the Consumer compartment
8 -----
NG1_0 = NG1; \quad VM_0 = VM;
Gin 0 = Gin;
rCO2r_0 = rCO2r; rO2r_0 = rO2r;
if arret
 break
end
disp(' *** Consumer - End of initialization ***')
```

ESA-ESTEC	Overall strategy for the	MELISSA - Technical Note 54.4 e interfacing of the HPC to the M	4 IELISSA loop – Phase II	October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 31

```
*
%
        Liquefying compartment (static behaviour)
                                                                              *
%
        Version 2 October 2001
%
                                                                              *
                                                                              *
%
        Data according to TN 54.3
                                                                              *
%
                                                                              *
%
                                                                              *
%
         i_sim_1.m : Initialization of the simulation
%
                                                                              *
arret = 0;
% General parameters of the simulated process
§ _____
NG1= 1; % number of mono-phase substrates in the Gas phase : H2
        % number of bi-phases substrates (in the L and G phases) :
NG = 0;
NL = 6; % number of mono-phase substrates in the Liquid phase : CO2 NH3 AcOH BuOH SO4 PO4
NO = NG1+NL;
% Parameters of the consumer compartment
% -----
Gin = 18; % incoming gas volumetric rate as in Rhodo (1/h): arbitrary value
Fin = Fin_1; % l/h
Temp = 330; % K (TN35.1 ADERSA)
pH = 5; % (TN35.1 ADERSA)
% Gas/liquid transfer parameters
8 --
KLa = inf; % CO2 NH3 CH3COOH (1/h)
% Partition coefficients
2 _
kpartN = [3181.8; 23.832; 9.9507e-2];% CO2 NH3 CH3COOH (T=330K, non ionic form)
kpartN = [3181.8; 23.832]; % CO2 NH3 (T=330K,non ionic form)
                                 % computed from TN35.1,ADERSA
% Dissociation coefficient (for CO2)
Ka = [5.2460e-7; 7.1050e-11];
                                      % at T=330K, from TN 35.1, ADERSA
KCO2 = Ka(1)/10^(-pH)*(1+Ka(2)/10^(-pH)); % [HCO3-]+[CO3--] = KCO2 * [CO2]solvated
% Dissociation coefficient (for NH3)
    ------
                    % basicity cst at T=330K, from TN 35.1,ADERSA
% ionic product at T=330K, from TN 35.1,ADERSA
Kb = 1.7517e-5;
Ke = 7.9653e - 14i
KNH3 = Kb*10^(-pH)/Ke; % [NH4+] = KNH3 * [NH3]solvated
% Dissociation coefficient (for AcOH)
8 -----
Ka = 1.5732e-5; % at T=330K, from TN 35.1,ADERSA
KAc = Ka/(10^(-pH)); % [AcO-] = KAc * [AcOH]
% Dissociation coefficient (for H3PO4) (unused)
8 -----
Ka = 6.166e-8;
                            % (at T=298K, from TN 27.2,LGCB)
xx = 10^(-pH)/Ka; KPO4 = 1+xx; %[PO4]total = f([HPO4=])
% Dissociation vector for the biphase substrates
Kdis = [KCO2; KNH3; KAc]; % CO2 NH3 CH3COOH
% Gas/liquid thermodynamical equilibrium constants
% --
VM = 22.4 * Temp / 273; % molar volume of perfect gas (1/mol)
alpha = kpartN / 55.56 / VM;
% Stoechiometry of the reaction of faeces decomposition
% 1. mol product / mol faeces (from TN17.1 LGCB)
   Yxf = [ .89125 ; % H2
            .25
                        % CO2
                    ;
                  ; % NH3
; % CH3COOH (acetic acid)
            .1055
            .25
            .0625 ; % C3H7COOH (butyric acid)
            .0 ; % H2SO4
.0 ]; % H3PO4
  % change of unit of Yxf :
```

ESA-ESTEC	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II			October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 32

```
Matom = [12; 1; 16; 14; 32; 31]; % CHONSP atomik mass
          С
               Н
                      0
                           Ν
                                 S
   S_{comp} = [1 \quad 1.649 \quad .15]
                         .1055 0 0 ]; % stoechio composition faeces
   Mfaec = Scomp*Matom;
  % 2. mol product/g faeces
   %Yxf = Yxf ./ (ones(NG1+NG+NL,1)*Mfaec'); % (mol substrate / g faeces)
% Stoechiometry of the reaction of urea decomposition
% -----
 \ 1. mol product/ mol urea (from from TN17.1 LGCB)
   Yxu = [ 0
               ;
                   % H2
                     % CO2
                 ;
           1
                    % NH3
% CH3COOH
           2
                ;
           0
                 ;
           0
                ;
                    % C3H7COOH
               ; % H2SO4
]; % H3PO4
           0
           0
 % change of unit of Yxu :
             н
4
   2
         С
                     0
                           N
                                S
                                      D
   Scomp = [1]
                                 0 0]; % stoechio composition urea
                      1
                          2
   Murea = Scomp*Matom;
 % 2. mol product/g urea
   %Yxu = Yxu ./ (ones(NG1+NG+NL,1)*Murea'); % (mol substrate / g urea)
% Saving the specific variables of the Consumer compartment
% _____
NG1_1 = NG1; NG_1 = NG;
Gin_1 = Gin; Fin_1 = Fin;
                       NL_1 = NL; NO_1 = NO;
                                                VM_1 = VM;
Yxf_1 = Yxf; Yxu_1 = Yxu;
Kdis_1 = Kdis;
if arret
 break
end
disp(' *** Lique - End of initialization ***')
Photoheterotrophic compartment (Rhodobacter)
%
                     October 2001
                                                                         *
%
        Version 2
                                                                         *
%
                                                                         *
%
        State system according to TN 54.2
                                                                         *
%
                                                                         *
%
                                                                         *
%
        i_sim_2.m : Initialization of the simulation
%
                                                                         *
        . no mineral limitation
%
                                                                         *
%
        . no carbon limitation
%
        . no decay of biomass
%
        . waste of 1 man (data computed from TN 35.1, ADERSA)
%
        . carbon source : acetate (no CO2 consumed)
%
        . anaerobic condition done by means of inert gas : N2 or He
                                                                         *
%
        . light limitation law according to TN 45.1; April 1999
                                                                         *
%
arret = 0;
% General parameters of the simulated process
% number of bi-phases subs. (in the L and G phases) : CO2 NH3 CH3COOH
NG = 3;
NL = 2i
            % number of mono-phase substrates in the liquid phase : SO4, PO4
NS = 1;
            % number of compounds of the biomass : biomass Rhodo
NI = 2*NG+NL+1; % nb of inputs of the process (photobio reactor)
NX = NG+NL+NS; % nb of coef of state vector X
NO = NG+NX; % nb of outputs of the process (photobio reactor)
% Parameters of the PBR
8 _____
```

ESA-ESTEC	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II			October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 33

```
RT = .048;
            % radius of the reactor (m)
VL = 7 ;
             % volume of liquid (1)
VL = 9;
             % volume of liquid (1).
             % Minimum volume required for FRmax=400W/m2 and a biomass production of .118 g/h
Gin = 18;
             % incoming gas flow rate (1/h) (same ratio as in Spirulina)
             % if Gin is time variable, move 'statesys' into the S-function 'pr_rhodo'
             % in order to compute the state system at each sampling period
Fin = Fin_2; % l/h
fI = .6;
             % illuminated surface fraction (ADERSA meeting on May 12th 1999)
Temp = 303;
             % K (TN35.1 ADERSA)
i = 7i
             % TN35.1 ADERSA
FRmin = 1;
             % (W/m2)
FRmax = 400; % (W/m2)
FRmax = 1000;% (W/m2) to allow trespassing 400 W/m2 during iterative computation
% Gas/liquid transfer parameters (same as for Spirulina : TN 43.110 p.26, UAB)
8 _____
KLa = 12; % CO2 NH3 CH3COOH (1/h)
% Partition coefficients
8 _____
kpartN = [1853.1; 11.349; 2.6414e-2];% CO2 NH3 CH3COOH (T=303K, non ionic form)
                                      % computed from TN35.1,ADERSA
% Dissociation coefficient (for CO2)
% −
Ka = [4.6271e-7; 5.1173e-11];
                                           % at T=303K, from TN 35.1, ADERSA
KCO2 = Ka(1)/10^(-pH)*(1+Ka(2)/10^(-pH)); % [HCO3-]+[CO3--] = KCO2 * [CO2]solvated
% Dissociation coefficient (for NH3)
% --
       _____
                       % basicity cst at T=303K, from TN 35.1,ADERSA
Kb = 1.6916e-5;
Ke = 1.4376e-14; % ionic product at T=303K, from TN 35.1,ADERSA
KNH3 = Kb*10^(-pH)/Ke; % [NH4+] = KNH3 * [NH3]solvated
% Dissociation coefficient (for AcOH)
8 -----
Ka = 1.7478e-5; % at T=303K, from TN 35.1,ADERSA
KAc = Ka/(10^(-pH)); % [AcO-] = KAc * [AcOH]
% Dissociation coefficient (for H3PO4) (unused)
§ _____
                                  % (at T=298K, from TN 27.2,LGCB)
Ka = 6.166e - 8;
xx = 10^(-pH)/Ka; KPO4 = 1+xx; %[PO4]total = f([HPO4=])
% Dissociation vector for the biphase substrates
2 _.
Kdis = [KCO2; KNH3; KAc]; % CO2 NH3 CH3COOH
% Gas/liquid thermodynamical equilibrium constants
8 ---
VM = 22.4 * Temp / 273; % molar volume of perfect gas (l/mol)
alpha = kpartN / 55.56 / VM;
% Parameters of the RHODO first principles model (LGCB TN 45.1)
& _____
                    _____
Ea=270; % mean Schuster mass absorption coefficient (m2/kg) (TN 45.1 p.15)
         % mean Schuster mass scattering coefficient (m2/kg) (TN 45.1 p.15)
Es=370;
muM=.15; % max. specific growth rate for acetate (1/h) (TN 45.1 p.18)
                                                     (W/m2) (TN 45.1 p.5)
(W/m2) (TN 45.1 p.11)
KJ=15;
         % half saturation constant
EpsJ=.01; % mean efficient intensity
q_rhod=3.2; % max ratio of V2/V3
                                                      (no dim)(TN 45.1 p.17)
% Computation of the state system of the biphasic compounds (same for Rhodo and Spiru)
[A2,B2,GG1,GG2] = stasys_4(NG, NL, Gin, Fin, VL, alpha, Kdis, KLa);
% Stoechiometry of the reactions of production of biomass
  % 1. mol substrate/1.8505 mol biomass Rhodo (from TN 39.1 p.10)
   Yx1 = [ .1495 ; % CO2
             -.38749 ;
                         % NH3
             -1
                         % CH3COOH
                    ;
             -.006292;
                         % H2SO4
             -.02813 ];
                         % H3PO4
   Yx1 = Yx1/1.8505;
  % change of unit of Yx1 :
                                        32;
                                              31]; % C H O N S P atomik mass
    Matom = [12; 1; 16;
                               Ň
                                 14;
            С
                  Н
                          0
                                        S
                                              Ρ
    8
                  1.5951 .3699 .2094 .0034 .0152]; % stoechio composition biomass Rhodo
    Scomp = [1]
    Mbio = Scomp*Matom;
  % 2. mol substrate/g biomass
    Yx1 = Yx1 ./ (ones(NG+NL,1)*Mbio'); % (mol substrate / g biomass)
```

ESA-ESTEC] Overall strategy for the	MELISSA - Technical Note 54.4 interfacing of the HPC to the M	ELISSA loop – Phase II	October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 34

```
% Limiting factors associated to mineral limitation (similar to XA of Spirulina)
KSSO4 = 2.5e-4/(Matom(5)+4*Matom(3)); % mol/l
% Mass balance checking
% Matrices of stoechiometric composition of each of compounds :
             C N S
1 0 0
% atom :
                                        P
0; % CO2 Gas
MSG = [

      1
      0
      0
      0, % CO2 Gas

      0
      1
      0
      0; % NH3 Gas

      2
      0
      0
      0]; % ACOH Gas

      [ 1+Kdis(1)
      0
      0; % CO2 Liquid

      0
      1+Kdis(2)
      0; % CO2 Liquid

      2*(1+Kdis(3))
      0
      0; % ACOH Liquid

      0
      0
      1
      0; % SO4

      0
      0
      0
      1]; % PO4

      Scomp(:
      [1 4 5 6]):
      % biomass

MSL =
MSS = Scomp(:,[1,4,5,6]);
                                                    % biomass
MSS = MSS ./ (Mbio*ones(1,4)); % atom/g biomass
% Vector of indices in state vector
8 -----
vNB = 1:NG; % indices of Biphasic compounds
vNM = NG+1:NG+NL; % indices of Monophasic compounds
vNS = NG+NL+1:NG+NL+NS; % indices of Solid compounds (biomass components)
 Solution of th(z) = 1/z 
% for determination of the minimum of the function Isigma in rx_rhodo or rx_spiru
[zmin_I, ii] = dichoto('tanh', '1/', 1, 2, 100, 1e-6);
% Saving the specific variables of the Rhodobacter compartment
8 _____

      NL_2 = NL;
      NG_2 = NG;
      NS_2 = NS;

      NI_2 = NI;
      NX_2 = NX;
      NO_2 = NO;

      A2_2 = A2;
      B2_2 = B2;
      GG1_2 = GG3

                                 GG1_2 = GG1; \quad GG2_2 = GG2;
KSSO4_2 = KSSO4;
Kdis_2 = Kdis; kpartN_2 = kpartN;
vNB_2 = vNB; vNM_2 = vNM; vNS_2 = vNS;
                Gin_2 = Gin; VL_2 = VL;
Fin_2 = Fin_i
                                                  VM_2 = VM;
Yx1_2 = Yx1;
fI_2 = fI;
               FRmin_2 = FRmin;
                                                       FRmax_2 = FRmax;
RT_2 = RT;
KJ_2 = KJ; EpsJ_2 = EpsJ;q_rhod_2 = q_rhod; zmin_I_2 = zmin_I;
MSG_2 = MSG; MSL_2 = MSI; MSS_2 - MSS;
               Es_2 = Es;
                                 muM_2 = muM;
%tau_2 = tau; Matom_2 = Matom;
Matom_2 = Matom;
<mark>if</mark> arret
 disp(' *=*=* Rhodo : initialization aborted *=*=*')
  break
end
disp(' *** Rhodo - End of initialization ***')
%
          Nitrifying column
%
           Version 2.3 October 2001
%
%
           State system according to TN 44.2
                                                                                                      *
%
                . dissociation of CO2 and NH3
                                                                                                      *
%
                . column = linear combination of tanks
                                                                                                      *
%
                                                                                                      *
%
           Modifications in March 2000
                                                                                                      *
%
                . vector KlNs and KlNb moved into scalar
                                                                                                      *
%
                . Monod type law for maintenance in 'irate.m'
%
%
%
           i_sim_3.m Initialization of the simulation
%
```

*

*

*

*

*

*

*

*

arret = 0;

ESA-ESTEC	Overall strategy for the	MELISSA - Technical Note 54.4 interfacing of the HPC to the M	4 IELISSA loop – Phase II	October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 35

```
% Column parameters
8-
   % 1.Parameters of the previous column (until TN 48.2)
                   % number of stirred tanks in part B (fixed bed)
       NB = 1;
       VA = 1.48;
                       % volume of part A (l)
                      % volume of part B (1)
% volume of part C (1)
       VB = 6.17;
       VC = 0.45;
                     % volume ratio of liquid
% volume ratio of gas
       epsL = .33;
       epsG = .04;
       epsT = epsG + epsL;
       Gin = .03*60;
                      % incoming gas volumetric rate (1/h)
       Fin = .0028*60; % incoming liq volumetric rate (1/h)
       RG = 1*99.0;
                     % recycling ratio of gas
       RL = 1*6.42;
                       % recycling ratio of liquid
       fG = 0;
                      % ratio of backward flow in a tank (gas phase)
       fL = 0;
                       % ratio of backward flow in a tank (liquid phase)
    % 2.Parameters of the column for TN 54.2
       Vmin = 31.7; % (1) volume min of the part B (fixed bed)
       Vmin = 31.7/5.5;% (1) volume min of the part B for NO3 production = .012 mol/h
(october 2001)
       coef_V=Vmin/epsL/VB;% multiplicative coef. of the vol of previous column
       VA = VA*coef_V; % adapted volume of part A (1)
       VB = VB*coef_V; % adapted volume of part B (1)
       VC = VC*coef_V; % adapted volume of part C (1)
       Gin = Gin*coef_V;% adapted incoming gas volumetric rate (1/h)
       Fin = Fin*coef_V;% adapted incoming liq volumetric rate (1/h)
        % modif. of the L and G flow rates to fit the flow of Spirulina Compart
       coef_L = max(0,(1+RL)*Fin/Fin_3 - 1);
       Fin = Fin_3;
                                   % 1/h
       coef_G = max(0,(1+RG)*Gin/Gin_4 - 1);
       Gin = Gin_4; % 1/h
        % modif. of the recycling ratio RG to keep constant '(1+RG)*Gin'
       RG = RG*coef G;
        % modif. of the recycling ratio RL to keep constant '(1+RL)*Fin'
       RL = RL*coef_L;
       VnB = VB / NB; % volume of an equivalent stirred tank
% general parameters
 _____
       NG = 3;
                       % number of bi-phases substrates (in the L and G phases)
       NL = 4;
                       % number of mono-phase substrates in the liquid phase
                   % number of strains of bacteria (Ns and Nb)
       NS = 2;
       NX = NG+NL+2*NS;% nb of coef of state vector Xi for any tank
       NO = NX+NG; % nb of outputs for any tank
       NI = 2*NG + NL;
       NV = NI * (NB + 2);
% kinetic parameters
8 _____
       Nls = 4;
                                       % nb of limiting substrates
       Nis = 2i
                                       % nb of inhibitory substrates
                  Ns
                             Nb
       mumax = [5.7e-2 ;
                           3.6e-2];
                                      % max specific growth rate (1/h)
       maint = [3.38e-3; 7.92e-3]; % maintenance coeffcient (1/h*(mol/gbio))
       KlNs = [5.05e-6]
                                       % limiting substrate for growth : 02
                                  ;
                                                                            (mol/l)
                                       % limiting substrate for growth : NH3 (mol/l)
                6.625e-5
                                 ;
                1e-10
                                 ];
                                       % no limitation with HCO3- for growth (mol/l)
       KlNb = [
                           1.7e-5 ;
                                       % limiting substrate for growth : 02
                                                                             (mol/l)
                                      % limiting substrate for growth : NO2- (mol/l)
                           3.6e-4 ;
                           1e-10 ];
                                       % no limitation with HCO3- for growth (mol/l)
                           1e30 ;
                                       % inhibitory substrate : NO2- (mol/l)
       In =
               [1e30
                1e30
                           1e30] ;
                                       % inhibitory substrate : NO3- (mol/l)
       KmNs = KlNs(1:2,1);
                                   % limiting substrate for maintenance : O2; NH3 (mol/l)
       KmNb = KlNb(1:2,1);
                                   % limiting substrate for maintenance : 02; NO2- (mol/l)
```

ESA-ESTEC	Overall strategy for the	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II		
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 36

```
% stoechiometric parameters
                                       % inverse of yield of biosynthesis :
                                       % (mol substr./mol biomass)
       Yx1 = [-5.4269 -6.5106;
                                      % 02
                -1
                          -1 ;
                                       % HCO3-
                -4.5341 -0.1994 ;
                                       % NH3
                        -15.1714;
                4.3347
                                       % NO2-
                0
                           15.1714;
                                       % NO3-
                -0.0089
                          -0.0089;
                                       % HPO4--
                          -0.0035];
                -0.0035
                                       % SO4--
                                      % H+ (unused for simplification)
% HO- (unused for simplification)
                          -0.0248 ;
               % 4.3099
               % 1
                          1];
                                       % inverse of yield of maintenance :
                                       % (mol substr./mol maintenance substr.)
       Ym1 = [-1.5
                          -0.5 ;
                                     °8 02
                         0
                                      % HCO3-
                0
                                 ;
                -1
                          0
                                  ;
                                       % NH3
                          -1
                                       % NO2-
                1
                                  ;
                          1
                                 ;
                0
                                       % NO3-
                 0
                           0
                                  ;
                                       % HPO4--
                                ];
                                     % SO4--
                 0
                          0
       % change of unit of Yx1 :
       Matom = [12; 1; 16; 14; 32; 31]; %CHONSP atomik mass
Scomp = [1 1.6147 .3906 .1994 .0035 .0089]; % stoechio composition
       M_nitri = Scomp*Matom;
       Yx1 = Yx1 / M_nitri; % (mol substrate / g biomass)
       % gas/liquid transfer parameters
8 -----
       KLa = 1*[51; 51; 500]; % O2 CO2 NH3 (1/h)
% partition coefficients
§ _____
       kpartN = [4.599e4; 1853.1; 11.349 ]; % O2 CO2 NH3 (T=303K, non ionic form)
                                               % computed from TN35.1,ADERSA
% dissociation coefficient (for CO2)
<u>۶</u> _____
       Ka = 4.627e-7;% at T=303K, from TN 35.1, ADERSAKCO2 = Ka / le-8;% [HCO3-] = KCO2 * [CO2]solvated
% dissociation coefficient (for NH3)
% _____

      Kb = 1.6916e-5;
      % basicity cst at T=303K, from TN 35.1, ADERSA

      Ke = 1.4376e-14;
      % ionic product at T=303K, from TN 35.1, ADERSA

                               % ionic product at T=303K, from TN 35.1,ADERSA
       KNH3 = Kb * 1e-8 / Ke; % [NH4+] = KNH3 * [NH3]solvated
% dissociation coefficient (for H3PO4)
% ------ % (at
       Ka = 6.166e-8; % (at
xx = 1e-8/Ka; KPO4 = 1+xx;
                              % (at T=298K, from TN 27.2,LGCB)
                                       %[PO4]total = f([HPO4=])
% dissociation vector for the biphase substrates
Kdis = [0; KCO2; KNH3]; % O2 CO2 NH3
% liquid/gas thermodynamical equilibrium constants
8.
       VM = 22.4 * 303 / 273; % molar volume (1/mol)
       alpha = kpartN / 55.56 / VM;
% Computation of the state system of the nitrifying compartment
   [Ae,Be,Ce,De,E] = stasys_3(NG, NL, NB, Gin, Fin, RG, RL, fG, fL, ...
                              VA, VnB, VC, epsL, epsG, epsT, ...
                               alpha, Kdis, KLa);
% Initialization of vector of indices
   iO2 = 1:NG+NL:(NB+1)*(NG+NL)+1; % indices of O2 L in the state vector
                      % indices of HCO3- in the state vector
% indices of NH3 L in the state vector
   iCO2 = iO2 + 1;
   iNH3 = iCO2 + 1;
    iNO2 = iNH3 + 1;
                                    % indices of NO2 in the state vector
```

ESA-ESTEC	Overall strategy for the	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II		
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 37

```
iNO3 = iNO2 + 1;
                                    % indices of NO3 in the state vector
    iPO4 = iNO3 + 1;
                                     % indices of PO4 in the state vector
    iSO4 = iPO4 + 1;
                                    % indices of SO4 in the state vector
                                    % ind. of subs. in state vector
    iSub = 1:(NG+NL)*(NB+2);
    iXNs = 1 : 2*NS : 2*NS*(NB+1) + 1;
    iXNs = iXNs + (NG+NL)*(NB+2); % ind. of act. biomass Ns in the state vector
    iXNb = iXNs + 1;
                                 % ind. of act. biomass Nb in the state vector
    iXaq = (NG+NL)*(NB+2) + 1 :(NG+NL+2*NS)*(NB+2); % ind. of active and global
    indG0 = 1:NG; indG = indG0;
    indL0 = NG+1:2*NG+NL; indL = indL0;
    for ii = 1:NB+1
     indG = [indG, indG0+ii*NI]; % ind. of Gas concen. in the output vector
indL = [indL, indL0+ii*NI]; % ind. of Liq concen. in the output vector
    end
% Noise
8----
        \ensuremath{\$} 1. Weight vector of the noise on the derivative of the state vector
        WXO = 0*5*[0 0 1e-6 1e-6 1e-6 0
                                                     01;
        WX = WX0;
        for ii = 1:NB+1
         WX = [WX, WX0];
        end
        % 2. Weight vector of the noise on the output vector
        WYG0 = 0*5*[0 	 0 	 0];
WYL0 = 0*5*[0 	 0 	 1e-5;
        WYL0 = 0*5*[0]
                             1e-5/(1+KNH3) 0 1e-5 0 0];
                        0
        WYG = WYG0;
        WYL = WYLO;
        for ii = 1:NB+1
         WYG = [WYG, WYG0];
         WYL = [WYL, WYL0];
        end
% Checking the mass balance
§_____
        % 1. Matrices of stoechiometric composition of each compounds :
                     N
                              S
        % atom : C
                                              P
        MSG = [ 0
                          0
                                    0
                                               0
                                                      ; % 02 Gas
                                                     ; % CO2 Gas
]; % NH3 Gas
                                            0
0
                          0
                                    0
                1
                                  0
                          1
                                            0
0
                                                      ; % 02
        MSL = [ 0
                          0
              1+Kdis(2) 0
                                                      ; % CO2 L and ionic forms
                   1+Kdis(3) 0
                                             0
                                                      ; % NH3 L and ionic forms
                0
                                    0
                                              0
                                                      ; % NO2
                 0
                          1
                 0
                           1
                                    0
                                              0
                                                      ;
                                                         % NO3
                 0
                           0
                                     0
                                              1
                                                      ; % HPO4
        % biomass Ns and Nb
        % 2. matrices of volume of tanks
        Vg = [ VA*epsG/epsT;
              VnB*epsG*ones(NB,1);
              VC*epsG/epsT];
        Vl = [ VA*epsL/epsT;
              VnB*epsL*ones(NB,1);
              VC*epsL/epsT];
% Saving the specific variables of the Nitrifying compartment
% _____
NL_3 = NL;
              NG_3 = NG; NS_3 = NS;
NB_3 = NB;
              NX_3 = NX;
                            NO_3 = NO;
                                            NI_3 = NI; NV_3 = NV;
Kdis 3 = Kdis;
Fin_3 = Fin; Gin_3 = Gin; RL_3 = RL;
Ae_3 = Ae;
              Be_3 = Be;
                             Ce_3 = Ce_i
                                            De_3 = De;
                                                          E_3 = E;
              WYG_3 = WYG; WYL_3 = WYL;
WX 3 = WX;
iO2_3 = iO2; iCO2_3 = iCO2; iNH3_3 = iNH3; iNO2_3 = iNO2;
iSub_3 = iSub; iXNs_3 = iXNs; iXNb_3 = iXNb; iXag_3 = iXag;
KlNs_3 = KlNs; KlNb_3 = KlNb; KmNs_3 = KmNs; KmNb_3 = KmNb;
mumax_3=mumax; maint_3=maint;
Yx_3 = Yx; Yx1_3 = Yx1; Ym1_3 = Ym1;
indG_3 = indG; indL_3 = indL;
MSG_3=MSG; MSL_3=MSL; MSS_3=MSS;
Vl_3 = Vl; alpha_3=alpha; KLa_3=KLa;
```

ESA-ESTEC	Overall strategy for the	MELISSA - Technical Note 54.4 interfacing of the HPC to the M	I ELISSA loop – Phase II	October 2001
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 38

if arret disp(' *=*=* Nitri : initialization aborted *=*=*') break end disp(' *** Nitri - End of initialization ***') % Photoautotrophic compartment (Photosynthesis) * * % Version 2 October 2001 * % % State system according to TN 54.2 * % . mineral limitation (NO3 SO4) * % . no carbon limitation (conclusion of TN 32.4, LGCB) * % . NH3 is not a substrate (not consumed by biomass) * * % * % % i sim 4.m : Initialization of the simulation * % arret = 0;% General parameters of the simulated process 8 _____ ------NG = 2;% number of bi-phases substrates (in the L and G phases) : 02, CO2 % number of mono-phase substrates in the liquid phase:NO3, SO4, PO4 NL = 3i% number of compounds of the biomass : XA, XV, EPS, PC, CH NS = 5iNI = 2*NG+NL+1; % nb of inputs of the process (photosynthetic reactor) NX = NG+NL+NS; % nb of coef of state vector X NO = NG+NX; % nb of outputs of the process (photosynthetic reactor) % Parameters of the PBR 2 ____ RT = .076; % radius of the reactor (m) % volume of liquid (1) (from TN43.110 p.4, UAB) VL = 77;Gin = Gin_4; % incoming gas flow rate (1/h) (from TN 43.110 p.26, UAB) % if Gin is time variable, move 'stasys_4' into the S-function 'pr_spiru' % in order to compute the state system at each sampling period Fin = Fin_4; % incoming liquid flow rate (1/h) (if Fin variable, do as for Gin) fI = .688; % Illuminated surface fraction (TN43.110 p.4, UAB) Temp = 309; % K pH = 9.5; % (W/m2) FRmin = 5;FRmin = .001; % (W/m2) FRmax = 223; % (W/m2) FRmaxc=1000; % (W/m2) % used in iterative computation % gas/liquid transfer parameters (TN 43.110 p.26, UAB) § _____ KLa = 12; % 02 CO2 NH3 (1/h) % partition coefficients 8 _____ % O2 CO2 NH3 (T=309K, non ionic form) kpartN = [4.9856e4; 2135.7; 13.539];% computed from TN35.1,ADERSA % (for extension to NH3 when NH3=substrate) kpartN = [4.9856e4; 2135.7];% O2 CO2 (T=309K, non ionic form) % dissociation coefficient (for CO2) § _____ Ka = [4.882e-7; 5.661e-11]; % at T=309K, from TN 35.1,ADERSA KCO2 = Ka(1)/10^(-pH)*(1+Ka(2)/10^(-pH)); % [HCO3-]+[CO3--] = KCO2 * [CO2]solvated % dissociation coefficient (for NH3) ۶_____ Kb = 1.7241e-5; % basicity cst at T=309K, from TN 35.1, ADERSA % ionic product at T=309K, from TN 35.1, ADERSA Ke = 2.1900e - 14;KNH3 = Kb*10^(-pH)/Ke; % [NH4+] = KNH3 * [NH3]solvated % dissociation coefficient (for H3PO4) ۶ _____ Ka = 6.166e-8; % (at T=298K, from TN 27.2,LGCB)

ESA-ESTEC] Overall strategy for the	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II		
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 39

```
xx = 10^(-pH)/Ka; KPO4 = 1+xx; %[PO4]total = f([HPO4=])
% dissociation vector for the biphase substrates
8 --
Kdis = [0; KCO2; KNH3]; % O2 CO2 NH3 (for extension to NH3 when NH3=substrate)
Kdis = [0; KCO2];
                                      % O2 CO2
% liquid/gas thermodynamical equilibrium constants
                                                   ____
VM = 22.4 * Temp / 273; % molar volume of perfect gas (1/mol)
alpha = kpartN / 55.56 / VM;
% parameters of the Spirulina growth (TN19.2, LGCB)
zCH = .01; % mass biotic fraction of CH
zPC = .162; % mass biotic fraction of PC
Ea=872;
                   % global absorption mass coef. (m2/kg)
Es=200;
                   % global scattering mass coef. (m2/kg)
                 % max growth rate for biomass in relation to phycocyanins (1/h)
muM=.45;
\tt muEPS=1.852; \$ max growth rate for EPS in relation to phycocyanins (1/h)
Ki=20;
                % half satur. cste for energy to active biomass (W/m2)
KjEPS=750; % half satur. cste for energy to EPS synthesis (W/m2)
Fmin=1;
                   % min incident light energy flux (W/m2)
% Computation of the state system of the biphasic compounds
[A2,B2,GG1,GG2] = stasys_4(NG, NL, Gin, Fin, VL, alpha, Kdis, KLa);
% Stoechiometry of the reactions of production of biomass
%
   % 1. mol substrate/mol biomass
                                    EPS
0.96
   응
                         XA
                                                    Glycogen
      Yx1 = [ 1.437
                                                       1.0745;
                                                                            8 02
                                                      -1 ;
0 ;
                                      -1
                      -1
                                                                           % CO2
                                    0
                      -0.1921
                                                                   ;
                                                                           % NO3-
                      -0.0052 -0.015
                                                    -0.008 ;
                                                                         % H2SO4
                      -0.0063
                                     0
                                                       0
                                                                ];
                                                                         % H3PO4
   % change of unit of Yx1 :
      Matom = [12; 1; 16;
% C H O
                                                        14; 32; 31]; % C H O N S P atomik mass
                                                                  S
                     С
                                                       N
                                                                              Ρ
                              1.566 .405
                                                       .1921 .0052 .0063; % stoechio composition XA
       Scomp = [1
                               1.65 .95
1.67 .71
                                                       0 .015 0 ; % stoechio composition EPS
0 .008 0 ]; % stoechio composition G
                     1
                                                     0
                              1.67
                      1
      Mbio = Scomp*Matom;
    % 2. mol substrate/g biomass
       Yx1 = Yx1 ./ (ones(NG+NL,1)*Mbio'); % (mol substrate / g biomass)
% Limiting factors associated to mineral limitation
KSNO3 = 5e-4/(Matom(4)+3*Matom(3));
                                                                 % mol/l
KSSO4 = 2.5e-4/(Matom(5)+4*Matom(3)); % mol/l
KSPO4 = KSSO4;
                                                                 % mol/l (according to JFC)
KSPC = .06;
                                                                  % g/l
% Vector of indices in state vector
vNB = l:NG; % indices of Biphasic compounds
vNM = NG+l:NG+NL; % indices of the second se
8 -----
vNM = NG+1:NG+NL; % indices of Monophasic compounds
vNS = NG+NL+1:NG+NL+NS; % indices of Solid compounds (biomass components)
 Solution of th(z) = 1/z 
% for determination of the minimum of the function Isigma in rx_rhodo or rx_spiru
[zmin_I, ii] = dichoto('tanh', '1/', 1, 2, 100, 1e-6);
% Mass balance checking
% Matrices of stoechiometric composition of each of compounds :
% atom : C N S P
MSG = [ 0
                                 0
                                                0
                                                                0;
                                                                        % 02 Gas
                                              0
                                                              0]; % CO2 Gas
                               0
                  1
                                                              0; % O2 Liquid
0; % CO2 Liquid and ionic forms
MSL = [ 0
                               0
                                              0
               1+Kdis(2) 0
                                                0
                                                               0; % NO3
                                               0
                 0
                                 1
                                                1
                                                               0; % SO4
1]; % PO4
                  0
                                 0
                  0
                                 0
                                                0
MSS = Scomp(:, [1, 4, 5, 6]);
                                                                       % XA, EPS, G
MSS = MSS ./ (Mbio*ones(1,4)); % atom/g biomass
```

ESA-ESTEC	Overall strategy for the	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II		
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 40

```
% Saving the specific variables of the Spirulina compartment
8 -----
NL_4 = NL; NG_4 = NG; NS_4 = NS;
                       NO_4 = NO;
GG1_4 = GG1;
            NX_4 = NX;
NI_4 = NI;
A2_4 = A2;
            B2_4 = B2;
                                     GG2_4 = GG2;
KSPC_4 = KSPC; KSNO3_4 = KSNO3;
KSSO4_4 = KSSO4;
                            KSPO4_4 = KSPO4;
Kdis_4 = Kdis; kpartN_4 = kpartN;
vNB_4 = vNB;
            vNM_4 = vNM; vNS_4 = vNS;
Fin_4 = Fin;
            Gin_4 = Gin;
                         VL_4 = VL;
Yx1_4 = Yx1;
fI_4 = fI;
                                          FRmax_4 = FRmax;
            FRmin_4 = FRmin;
                                                            FRmaxc 4 = FRmaxc;
zPC 4 = zPCi
            zCH_4 = zCH;
RT_4 = RT;
Ea_4 = Ea;
            Es_4 = Es;
                         muM_4 = muM;
                                     muEPS_4 = muEPS;
            KjEPS_4 = KjEPS;
Ki 4 = Ki;
                                        Fmin 4 = Fmin;
MSG_4 = MSG; MSL_4 = MSL; MSS_4 = MSS;
zmin_I_4 = zmin_I;
if arret
 disp(' *=*=* Spiru : initialization aborted *=*=*')
 break
end
disp(' *** Spiru - End of initialization ***')
%
       Higher Plants Chamber (HPC)
                                                                             *
%
        Version 1.0
                         October 2001
                                                                             *
                                                                             *
%
%
        State system according to TN 54.4
                                                                             *
        HPC simulated according to TN 32.3 by LGCB
%
                                                                             *
%
%
        i sim 5.m Initialization of the simulation
%
arret = 0;
% General parameters of the simulated process (HPC)
            % number of bi-phases substrates (in the L and G phases): 02, CO2, NH3
NG = 3i
NL = 3i
             % number of mono-phase substrates in the liquid phase: NO3, SO4, PO4
NS = 8;
             % number of plants : Tomato, Rice, Lettuce, Potato, Soybean, Spinach, Onion,
Wheat
NI = 2*NG+NL; % nb of inputs of the process
NX = 2*NG+NL+NS;% nb of coef of state vector X
NO = NX;
            % nb of outputs of the process
% Parameters of the HPC
8 _____
VG = 4e4; % volume of Gas (1) (from Toulouse and Guelph meetings)
VL = 100; % volume of liquid (1) (arbitrary value)
Gin = Gin_4; % incoming gas flow rate (1/h) (from TN 43.110 p.26, UAB)
           % if Gin is time variable, move 'stasys_5' into the S-function 'pr_hpc'
           \ensuremath{\$} in order to compute the state system at each sampling period
Fin = Fin_5; % incoming liquid flow rate (1/h) (if Fin variable, do as for Gin)
Temp = 293; % K
pH = 5.8;
% Gas/liquid transfer parameters (arbitrary value)
% Partition coefficients
2 ___
kpartN = [3.9034e4; 1.4168e3; 8.3186]; % O2 CO2 NH3 (T=293K, non ionic form)
% Dissociation coefficient (for CO2)
§ _____
                        _____
Ka = [4.0726e-7; 4.1500e-11];
                                    % at T=293K, from TN 35.1,ADERSA
```

ESA-ESTEC	Overall strategy for the	MELISSA - Technical Note 54.4 Overall strategy for the interfacing of the HPC to the MELISSA loop – Phase II		
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 41

```
KCO2 = Ka(1)/10<sup>(-pH)</sup>*(1+Ka(2)/10<sup>(-pH)</sup>); % [HCO3-]+[CO3--] = KCO2 * [CO2]solvated
                                         % computed from TN35.1, ADERSA
% Dissociation coefficient (for NH3)
8 --
                  % basicity cst at T=293K, from TN 35.1,ADERSA
Kb = 1.6041e-5;
                       % ionic product at T=293K, from TN 35.1,ADERSA
Ke = 6.7220e - 15;
KNH3 = Kb*10^(-pH)/Ke; % [NH4+] = KNH3 * [NH3]solvated
% Dissociation coefficient (for H3PO4)
۶ _____
Ka = 6.166e-8;
                                 % (at T=298K, from TN 27.2,LGCB)
xx = 10^(-pH)/Ka; KPO4 = 1+xx; %[PO4]total = f([HPO4=])
% Dissociation vector for the biphase substrates
& _____
Kdis = [0; KCO2; KNH3]; % O2 CO2 NH3
% Liquid/gas thermodynamical equilibrium constants
% -----
VM = 22.4 * Temp / 273; % molar volume of perfect gas (l/mol) alpha = kpartN / 55.56 / VM;
% Computation of the state system of the biphasic compounds (both G and L; not L alone)
8 -
    A2 = [-diag((Gin + KLa./alpha*VL)/VG), diag(KLa*VL/VG);
                                         -diag(Fin/VL + KLa./(1+Kdis))];
          diag(KLa./alpha./(1+Kdis)),
    B2 = [ diag(Gin/VG*ones(NG,1)), zeros(NG,NG),
                                                        diag(ones(NG,1)), zeros(NG,NG);
          zeros(NG,NG),
                                  diag(Fin/VL*ones(NG,1)), zeros(NG,NG),
diag(1./(1+Kdis))];
% Stoechiometric composition for 1 mol of dry plant
°
  _____
  % 1. edible
  % 1.1. digestible
                           H O N S P
1.7928 0.8004 0.0546 0.0005 0;
            Coeff C
  2
    Scomp1= [1
                    1
                                                                 % Tomato
                   1
            1
                           1.6650 0.7546 0.0257 0.0006 0;
                                                                 % Rice
                           1.7107 0.4464 0.1348 0.0019
1.6492 0.7750 0.0335 0.0006
             1
                    1
                                                            0;
                                                                 % Lettuce
             1
                    1
                                                            0;
                                                                 % Potato
                           1.6878 0.2952 0.1321 0.0035
             1
                    1
                                                            0;
                                                                 % Soybean
             1
                    1
                            1.6406 0.2835 0.1870 0.0088
                                                            0;
                                                                 % Spinach
                           1.8113 0.7510 0.0742 0.0010 0;
             1
                    1
                                                                 % Onion
                           1.6548 0.7215 0.0430 0.0012 0];
                   1
                                                                 % Wheat
             1
                        H
J
    1.2. fibre
  8
    Coeff C
Scomp2= [0.4040 1
                                            Ν
                                    0
                                                            D
  %
                                                    S
                            1.6560 0.8280 0
                          1.6560 0.8280 0
1.6667 0.8333 0
1.6537 0.8268 0
1.6513 0.8257 0
                                                   0
                                                            0;
                                                                 % Tomato
                                                  0
0
0
            0.0335 1
                                                          0;
                                                                 % Rice
            0.5016 1
0.1413 1
                                                          0;
0;
                                                                 % Lettuce
                                                                 % Potato
                           1.6000 0.8000 0
             0.2022 1
                                                  0
                                                            0;
                                                                 % Soybean
             0.4215 1
0.4183 1
                            1.6467 0.8233 0
                                                   0
                                                           0;
                                                                 % Spinach

        1.6560
        0.8280
        0
        0

        1.6667
        0.8333
        0
        0

                                                                 % Onion
                                                            0;
             0.1320 1
                                                            01;
                                                                % Wheat
  % 1.3. edible = disgestible + fibre (for 1 mol of dry edible part of plant)
    inde = 2:7; % indices of atoms CHONSP in 'Scomp1' and 'Scomp2'
    Scompe=(Scomp1(:,1)*ones(size(inde))).*Scomp1(:,inde) +
(Scomp2(:,1)*ones(size(inde))).*Scomp2(:,inde);
  % 2. waste
  8
             Coeff
                   C
                            Н
                                    0
                                            Ν
                                                            Ρ
                           1.43 0.62 0.017 0.007
    Scomp1= [1
                   1
                                                            0; % Tomato
                                                  0.007
                                  0.62
                           1.43
                                            0.017
                                                                 % Rice
            1
                    1
                                                            0;
             1
                    1
                            1.43
                                    0.62
                                            0.017
                                                   0.007
                                                            0;
                                                                 % Lettuce
                            1.43
                                   0.62
                                            0.017 0.007
             1
                    1
                                                            0;
                                                                 % Potato
             1
                    1
                            1.43
                                    0.62
                                            0.017
                                                   0.007
                                                            0;
                                                                 % Soybean
                                                  0.007
             1
                    1
                            1.43
                                   0.62
                                            0.017
                                                            0;
                                                                 % Spinach
                                  0.62
                                                   0.007
             1
                    1
                            1.43
                                            0.017
                                                            0;
                                                                 % Onion
                                                            0]; % Wheat
             1
                    1
                            1.43
                                   0.62
                                            0.017
                                                   0.007
    Scompw=(Scompl(:,1)*ones(size(inde))).*Scompl(:,inde); % for 1 mol of dry waste part of
plant
% Stoechiometry of the reactions of production of biomass
% _____
  % 1. mol substrate/mol dry edible plant (edible = digestible + fiber)
                            Lettuce Potato Soybean Spinach Onion
           Tomato Rice
                                                                              Wheat
  Ŷ
                   1.0836
                                                            1.7777
                                                                     1.5266
                                                                              1.2039;
    Yx1e= [ 1.4744
                             1.7627
                                        1.1803
                                                 1.5344
                                                                                           °
02
          -1.4040 -1.0335 -1.5016 -1.1413 -1.2022 -1.4215 -1.4183 -1.1320;
                                                                                           %
C02
```

ESA-ESTEC	Overall strategy for the	October 2001		
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 42

NH3	0.0252	-0.0109	-0.057371	-0.0142	-0.0562	-0.0796	-0.0316	-0.0183;	00
	-0.0313	-0.0147	-0.0774	-0.0192	-0.0758	-0.1074	-0.0426	-0.0247;	00
NO3-	-0 0005	-0 0006	_0 0019	-0 0006	-0 0035	-0 0088	-0 0010	-0 0012:	٩
H2SO4	-0.0005	-0.0000	-0.0019	-0.0000	-0.0035	-0.0000	-0.0010	-0.00127	
н3ро4	0	0	0	0	0	0	0	0];	00
YX V2O	del=[-1.1799	-0.8360	-1.1435	-0.9097	-0.8799	-0.9855	-1.1823	-0.8963];	8
H2O % 2.	mol substrate	e/mol dry w	waste plant						
% V v	Tomato	Rice 1 0648	Lettuce	Potato 1 0648	Soybean	Spinach 1 0648	Onion 1 0648	Wheat 1 0648:	2
02	1.0010	1.0010	1.0010	1.0010	1.0010	1.0010	1.0010	1.00107	0
CO2	-1.0000	-1.0000	-1.0000	-1.0000	-1.0000	-1.0000	-1.0000	-1.0000;	00
NU 2	-0.0072	-0.0072	-0.0072	-0.0072	-0.0072	-0.0072	-0.0072	-0.0072;	%
MIS	-0.0098	-0.0098	-0.0098	-0.0098	-0.0098	-0.0098	-0.0098	-0.0098;	%
NO3-	-0.0070	-0.0070	-0.0070	-0.0070	-0.0070	-0.0070	-0.0070	-0.0070;	0
H2SO4					0.0070			0.00707	Č
H3PO4	0	0	0	0	0	0	0	0];	5
Ч2О	x1w1=[-0.6923	-0.6923	-0.6923	-0.6923	-0.6923	-0.6923	-0.6923	-0.6923];	00
88 3	. checking the	mass bala	ance of the	global c	hemical equ	uations (at	coms C H O	NSP):	
00 00	atom : C	Н	0	N	S	P			
۷ ک ^ر	$ISC = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$	0	2	0	0	0	i % 02	2	
5 9		3	2	1	0	0	7 6 CU : 2 NH	3	
°0 9	0	1	3	1	0	0	: 9 UN	.03	
2	0	2	4	0	1	0	; 9 III	SO4	
0 0	0	2	4	0	1	1	· % 112	DO4	
б 0.	0	3	1	0	0	I O		204	
8	0	4	1	0	0	0]; % H∠	0	
10 1 00 00	disp('Mass is arret = 1;	unbalance	ance_e) <= ed in stoed	hiometry	s(mass_bala of reaction	ance_w) <= ns')	1e-3))		
% ∈ %4. Ma	end change of uni atom = [12; 1	t of Yx1	: ; 14;	32; 31]; %СН(ONSPate	omik mass		
% e % 4. Ma Mk Mk	end . change of uni atom = [12; 1 pice = Scompe*M picw = Scompw*M	t of Yxl ; 16 Matom; % eq Matom; % wa	: ; 14; dible aste	32; 31]; %СН(ONSPate	omik mass		
8 6 8 4. Ma Mk 8 5.	end . change of uni atom = [12; 1 bioe = Scompe*M biow = Scompw*M . mol substrate	t of Yxl ; 16 Matom; % eq Matom; % wa e/g dry pla	: ; 14; dible aste ant	32; 31]; %СН(ONSPato	omik mass		
 % € % 4. Ma Mk % 5. Yx Yx Yx 	<pre>end . change of uni atom = [12; 1 bioe = Scompe*M biow = Scompw*M . mol substrate cle = Yx1e ./ (clw = Yx1w ./ (</pre>	t of Yxl ; 16 Matom; % ex Matom; % ww /g dry pla ones(NG+NI ones(NG+NI	: ; 14; dible aste ant L,1)*Mbioe' L,1)*Mbioe'	32; 31); % (mol); % (mol]; % C H (substrate substrate) N S P ato / g dry eo / g dry wa	omik mass dible plan aste plant	t))	
% e % 4. Ma Mk % 5. Yx Yx % Diet	end . change of uni atom = [12; 1 bioe = Scompe*M biow = Scompw*M . mol substrate cle = Yxle ./ (clw = Yxlw ./ (c composition (t of Yxl ; 16 Matom; % eq Matom; % wa c/g dry pla ones(NG+NI ones(NG+NI 1 man.hou	: ; 14; dible aste ant L,1)*Mbioe' L,1)*Mbiow' r). From TN	32; 31); % (mol); % (mol 32.3 Tabl]; % C H (substrate substrate e 17.c p.24) N S P ato / g dry eo / g dry wa 4	omik mass dible plan aste plant	t))	
 % e % 4. Ma Mk % 5. Yx Yz % Diet % % Di 	end change of uni atom = [12; 1] pioe = Scompe*M piow = Scompw*M mol substrate cle = Yxle ./ (clw = Yxlw ./ (composition (Tomato Lete= [3.45]	t of Yx1 ; 16 Matom; % ex Matom; % ww /g dry pla ones(NG+NI 0 mes(NG+NI 1 man.hour Rice 69.06	: ; 14; dible aste ant L,1)*Mbioe' L,1)*Mbiow' r). From TN Lettuce 2.07	32; 31); % (mol); % (mol 32.3 Tabl Potato 126.79]; % C H (substrate substrate e 17.c p.2 Soybean 6.91) N S P ato / g dry eo / g dry wa 4 Spinach 6.91	omik mass dible plan aste plant Onion 6.91	t)) Wheat 207.17]/24;8	ş g
<pre>% e % 4. Ma Ma Mk % 5. Yx % Diet % % Di dry ec dry ec dry ec </pre>	<pre>end . change of uni atom = [12; 1 pioe = Scompe*M piow = Scompw*M . mol substrate cle = Yxle ./ (clw = Yxlw ./ (composition (</pre>	t of Yx1 ; 16 Matom; % ex Matom; % wx /g dry pl: ones(NG+NI ones(NG+NI 1 man.hour Rice 69.06 82.71	: ; 14; dible aste ant L,1)*Mbioe' L,1)*Mbiow' r). From TN Lettuce 2.07 1.77	32; 31); % (mol); % (mol 32.3 Tabl Potato 126.79 63.34]; % C H (substrate substrate e 17.c p.24 Soybean 6.91 3.85) N S P ato / g dry eo / g dry wa f Spinach 6.91 10.88	omik mass dible plan aste plant Onion 6.91 10.9	t)) Wheat 207.17]/24;% 315.93]/24;%	i d
<pre>% e % 4. Ma Ma Mb % 5. % Diet % % Di dry ec Di dry wa % Check</pre>	end . change of uni atom = [12; 1 bioe = Scompe*N biow = Scompw*N . mol substrate cle = Yxle ./ (clw = Yxlw ./ (. composition (. Tomato . tete= [3.45 lible plant .etw= [32.97 aste plant cking the mass	t of Yxl ; 16 Matom; % ed Matom; % wa e/g dry pla ones(NG+NI 0 nes(NG+NI 1 man.hour 1 man.hour Rice 69.06 82.71 balance or	: ; 14; dible aste ant L,1)*Mbioe' L,1)*Mbiow' r). From TN Lettuce 2.07 1.77 f the proce	32; 31); % (mol); % (mol 32.3 Tabl Potato 126.79 63.34 ss]; % C H (substrate substrate e 17.c p.24 Soybean 6.91 3.85	D N S P ato / g dry eo / g dry wa 4 Spinach 6.91 10.88	omik mass dible plan aste plant Onion 6.91 10.9	t)) Wheat 207.17]/24;% 315.93]/24;%	s a
<pre>% e % 4. Ma Mk % 5. Y2 Y2 % Diet % % Di dry ed dry ed % Chec % %</pre>	end . change of uni atom = [12; 1 bioe = Scompe*M biow = Scompw*M . mol substrate cle = Yx1e ./ (clw = Yx1w ./ (. composition (. c	t of Yx1 ; 16 Matom; % ed Matom; % wa /g dry pla ones(NG+NI ones(NG+NI 1 man.hour Rice 69.06 82.71 balance or	: ; 14; dible aste ant L,1)*Mbioe' L,1)*Mbiow' r). From TN Lettuce 2.07 1.77 f the proce	32; 31); % (mol); % (mol 32.3 Tabl Potato 126.79 63.34 ss]; % C H (substrate substrate e 17.c p.24 Soybean 6.91 3.85) N S P ato / g dry ed / g dry wa Spinach 6.91 10.88	dible plan aste plant Onion 6.91 10.9	t)) Wheat 207.17]/24;% 315.93]/24;%	2 2 3
<pre>% e % 4. Ma Mt Mt % 5. Y2 % Diet % % Di dry ed dry wa % Checo % Ma % at </pre>	end . change of uni atom = [12; 1 bioe = Scompe*M biow = Scompw*M . mol substrate cle = Yx1e ./ (clw = Yx1w ./ (. composition (. c	t of Yx1 ; 16 Matom; % ed Matom; % wa /g dry pla ones(NG+NI 0 nes(NG+NI 1 man.hour Rice 69.06 82.71 balance or cchiometric	: ; 14; dible aste ant L,1)*Mbioe' L,1)*Mbiow' r). From TN Lettuce 2.07 1.77 f the proce c compositi S	32; 31); % (mol); % (mol 32.3 Tabl]; % C H (substrate substrate e 17.c p.24 Soybean 6.91 3.85 h compounds) N S P ato / g dry eo / g dry wa f Spinach 6.91 10.88	omik mass dible plan aste plant Onion 6.91 10.9	t)) Wheat 207.17]/24;% 315.93]/24;%	₹ a ₽ a
<pre>% e % 4. Ma Mt Mt % 5. Yx Y2 % Diet % % Di dry ec % Chec % Ma % at mcc</pre>	<pre>end . change of uni atom = [12; 1 bioe = Scompe*M biow = Scompw*M . mol substrate cle = Yx1e ./ (clw = Yx1w ./ (clw = Yx1w ./ (clw = Yx1w ./ (clw = Yx1e ./ (clw = Scowpoint) (clw = Scowp</pre>	t of Yx1 ; 16 Matom; % ed Matom; % wa ones(NG+NI ones(NG+NI 1 man.hou Rice 69.06 82.71 balance of cchiometric N 0	: ; 14; dible aste ant L,1)*Mbioe' L,)*Mbiow' r). From TN Lettuce 2.07 1.77 f the proce c compositi. S 0	32; 31); % (mol); % (mol 32.3 Tabl Potato 126.79 63.34 ss 63.34 ss 0]; % C H (substrate substrate e 17.c p.24 Soybean 6.91 3.85 h compounds) N S P ato / g dry ed / g dry wa Spinach 6.91 10.88	omik mass dible plan aste plant Onion 6.91 10.9	t)) Wheat 207.17]/24;% 315.93]/24;%	2 2 3
<pre>% e % 4. Ma Mk % 5. Y2 % Diet % % Di dry ea % Chec % Aat MSG</pre>	<pre>end . change of uni atom = [12; 1 bioe = Scompe*M biow = Scompw*M . mol substrate che = Yxle ./ (clw = Yxlw ./ (clw = Yxlw ./ (composition (</pre>	t of Yx1 ; 16 Matom; % ed Matom; % wa ones(NG+NI 0 ones(NG+NI 1 man.hou 1 man.hou Rice 69.06 82.71 balance of echiometric N 0	: ; 14; dible aste ant L,1)*Mbioe' L,1)*Mbiow' r). From TN Lettuce 2.07 1.77 f the proce 	32; 31);%(mol);%(mol 32.3 Tabl Potato 126.79 63.34 ss on of eac P 0]; % C H (substrate substrate e 17.c p.24) N S P ato / g dry ed / g dry wa f Spinach 6.91 10.88	omik mass dible plan aste plant Onion 6.91 10.9	t)) Wheat 207.17]/24;% 315.93]/24;%	2 2 3
<pre>% e % 4. Ma Mk Mk % 5. Yx Yx % Diet % % Di dry ec Di dry wa % Chec % % Ma % at MSG</pre>	end . change of uni atom = [12;] pioe = Scompe*M piow = Scompw*M . mol substrate cle = Yxle ./ (. composition (. c	t of Yx1 ; 16 Matom; % ex Matom; % ww ones(NG+NI ones(NG+NI 1 man.hour Rice 69.06 82.71 balance or echiometric N 0	: ; 14; dible aste ant L,1)*Mbioe' L,1)*Mbiow' r). From TN Lettuce 2.07 1.77 f the proce c compositi S 0 0 0	32; 31); % (mol); % (mol 32.3 Tabl Potato 126.79 63.34 ss on of eac P 0 0]; % C H (substrate substrate e 17.c p.24 Soybean 6.91 3.85 h compounds ; % 02 Ga ; % 02 Ga ; % 02 Ga) N S P ato / g dry eo / g dry wa 4 Spinach 6.91 10.88	omik mass dible plan aste plant Onion 6.91 10.9	t)) Wheat 207.17]/24;% 315.93]/24;%	2 2 2
<pre>% e % 4. Ma Ma Mb % 5. Y2 % Diet % % Di dry ec Di dry wa % Chec % Ma % at MSG</pre>	end . change of uni atom = [12; 1 pioe = Scompe*M piow = Scompw*M . mol substrate cle = Yxle ./ (clw = Yxlw ./ (. composition (. c	t of Yx1 ; 16 Matom; % ex Matom; % wx /g dry pl: ones(NG+NI ones(NG+NI 1 man.hour nes(NG+NI 1 man.hour Rice 69.06 82.71 balance or echiometric N 0 1	: ; 14; dible aste ant L,1)*Mbioe' L,1)*Mbiow' r). From TN Lettuce 2.07 1.77 f the proce c compositi. S 0 0 0 0	32; 31); % (mol 32.3 Tabl 126.79 63.34 ss on of eac P 0 0 0]; % C H (substrate substrate e 17.c p.2') N S P ato / g dry eo / g dry wa f Spinach 6.91 10.88 s : as as	omik mass dible plan aste plant Onion 6.91 10.9	t)) Wheat 207.17]/24;% 315.93]/24;%	3 g
<pre>% e % 4. Ma Mk % 5. Y2 % Diet % % Di dry ed dry wa % Chece % at MSG MSL</pre>	<pre>end . change of uni atom = [12; 1 pioe = Scompe*M piow = Scompw*M . mol substrate cle = Yxle ./ (clw = Yxlw ./ (composition (. composition (. composi</pre>	t of Yxl ; 16 Matom; % ed Matom; % wa /g dry pli ones(NG+NI ones(NG+NI 1 man.hou 1 man.hou Rice 69.06 82.71 balance o: cchiometric N 0 0	: ; 14; dible aste ant L,1)*Mbioe' L,1)*Mbiow' r). From TN Lettuce 2.07 1.77 f the proce c compositi S 0 0 0 0 0	32; 31); % (mol 32.3 Tabl 32.3 Tabl Potato 126.79 63.34 ss on of eac P 0 0 0]; % C H (substrate substrate e 17.c p.24 Soybean 6.91 3.85 h compounds ; % 02 Ga ; % C02 Ga]; % NH3 Ga ; % 02) N S P ato / g dry eo / g dry wa Spinach 6.91 10.88 s : as as	dible plan aste plant Onion 6.91 10.9	t)) Wheat 207.17]/24;% 315.93]/24;%	2 g
<pre>% e % 4. Ma Mt Mt % 5. Y2 % Diet % % Di dry ec Di dry wa % Chec % at MSG MSL</pre>	end . change of uni atom = [12; 1 bioe = Scompe*M biow = Scompw*M . mol substrate cle = Yx1e ./ (clw = Yx1w ./ (c composition (. c	t of Yx1 ; 16 Matom; % ea Matom; % wa e/g dry pla ones(NG+NI ones(NG+NI 1 man.hour Rice 69.06 82.71 balance or cchiometric N 0 1 0 1	: ; 14; dible aste ant L,1)*Mbioe' L,1)*Mbiow' r). From TN Lettuce 2.07 1.77 f the proce c compositi S 0 0 0 0 0	32; 31); % (mol); % (mol 32.3 Tabl Potato 126.79 63.34 ss]; % C H (substrate substrate e 17.c p.24 Soybean 6.91 3.85 h compounds ; % 02 G ; % C02 G ; % NH3 G ; % 02 ; % C2 L	<pre>) N S P atc / g dry ec / g dry wa Spinach 6.91 10.88 s : as as as and ionic</pre>	forms	t)) Wheat 207.17]/24;% 315.93]/24;%	\$ g
<pre>% e % 4. Ma Mk % 5. Yx Yz % Diet % % Di dry ea % Chec % Ma % at MSG MSL</pre>	<pre>end . change of uni atom = [12; 1 bioe = Scompe*M biow = Scompw*M . mol substrate cle = Yx1e ./ (clw = Yx1w ./ (clw = Yx1w ./ (clw = Yx1w ./ (clw = Yx1w ./ (clw = Yx1e ./ (clw = Clw = clw = clw = clw = clw = clw = clw</pre>	t of Yx1 ; 16 Matom; % ed Matom; % wa ones(NG+NI ones(NG+NI 1 man.hou Rice 69.06 82.71 balance of cechiometric N 0 0 1 0 0 0 	: ; 14; dible aste ant L,1)*Mbioe' L,)*Mbiow' r). From TN Lettuce 2.07 1.77 f the proce c compositi S 0 0 0 0 0 0 0	32; 31);%(mol);%(mol 32.3 Tabl Potato 126.79 63.34 ss 0 0 0 0 0 0 0 0]; % C H (substrate substrate e 17.c p.24 Soybean 6.91 3.85 h compounds ; % 02 Ga ; % 02 Ga	<pre>) N S P atc / g dry ec / g dry wa Spinach 6.91 10.88 s : as as as as and ionic and ionic</pre>	omik mass dible plan aste plant Onion 6.91 10.9 10.9	t)) Wheat 207.17]/24;% 315.93]/24;%	3 g
<pre>% e % 4. Ma Mk % 5. Yx Yx % Diet % % Di dry ec Di dry wa % Chec % At % SG MSL</pre>	end . change of uni atom = [12; 1 pioe = Scompe*M piow = Scompw*M . mol substrate cle = Yxle ./ (clw = Yxlw ./ (. composition (. c	t of Yx1 ; 16 Matom; % ex Matom; % ww y g dry pla ones(NG+NI ones(NG+NI 1 man.hour Rice 69.06 82.71 balance or echiometric N 0 0 1 0 0 0 	: ; 14; dible aste ant L,1)*Mbioe' L,1)*Mbiow' r). From TN Lettuce 2.07 1.77 f the proce c compositi S 0 0 0 0 0 0 0 0 0	32; 31); % (mol 32.3 Tabl 32.3 Tabl Potato 126.79 63.34 ss on of eac P 0 0 0 0 0 0 0 0 0 0	<pre>]; % C H (substrate substrate e 17.c p.24 Soybean 6.91 3.85 h compounds ; % O2 Ga ; % CO2 Ga ; % CO2 Ga ; % O2 Ga ; % NH3 Ga ; %</pre>) N S P ato / g dry ed / g dry wa f Spinach 6.91 10.88 s : as as as as as and ionic and ionic	omik mass dible plan aste plant Onion 6.91 10.9 forms forms	t)) Wheat 207.17]/24;% 315.93]/24;%	3 g
<pre>% e % 4. Ma Mk % 5. Y2 % Diet % % Di dry ec Di dry ec % Chec % Ma % at MSG MSL</pre>	<pre>end . change of uni atom = [12; 1 pioe = Scompe*M piow = Scompw*M . mol substrate cle = Yxle ./ (clw = Yxlw ./ (composition (. composition (. composi</pre>	t of Yx1 ; 16 Matom; % ex Matom; % ww /g dry pl: ones(NG+NI ones(NG+NI 1 man.hour nes(NG+NI 1 man.hour Rice 69.06 82.71 balance or chiometric N 0 1 0 0 	: ; 14; dible aste ant L,1)*Mbioe' L,1)*Mbiow' r). From TN Lettuce 2.07 1.77 f the proce c compositin S 0 0 0 0 0 1	32; 31); % (mol 32.3 Tabl 126.79 63.34 ss on of eac P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>]; % C H (substrate substrate e 17.c p.2' Soybean 6.91 3.85 h compounds ; % 02 Ga ; % C02 Ga ; % C02 Ga ; % NH3 Ga ; % C02 L ; % NH3 Ga ; % NO3 ; % SO4</pre>) N S P ato / g dry eo / g dry wa f Spinach 6.91 10.88 s : as as as and ionic and ionic	forms forms	t)) Wheat 207.17]/24;% 315.93]/24;%	s a
<pre>% e % 4. Ma Mt Mt % 5. Y2 % Diet % % Di dry ed dry ed % Chec % Ma % at MSG MSL</pre>	<pre>end . change of uni atom = [12; 1 pioe = Scompe*M piow = Scompw*M . mol substrate cle = Yxle ./ (clw = Yxlw ./ (clw = Y</pre>	t of Yxl ; 16 Matom; % ed Matom; % wa e/g dry pl ones(NG+NI ones(NG+NI 1 man.hou: 1 man.hou: Rice 69.06 82.71 balance o: echiometric N 0 1 0 0 Kdis(3) 1 0 0	: ; 14; dible aste ant L,1)*Mbioe' L,1)*Mbiow' r). From TN Lettuce 2.07 1.77 f the proce c compositi S 0 0 0 0 0 0 1 0	32; 31); % (mol); % (mol 32.3 Tabl 	<pre>]; % C H (substrate substrate e 17.c p.24 Soybean 6.91 3.85 h compounds ; % 02 Ga ; % C02 Ga ; % C02 Ga ; % C02 Ga ; % C02 L ; % NH3 Ga ; % C02 L ; % NH3 L ; % NO3 ; % SO4]; % P04</pre>	<pre>) N S P atc / g dry ec / g dry wa Spinach 6.91 10.88 s : as as and ionic and ionic</pre>	omik mass dible plan aste plant Onion 6.91 10.9 forms forms	t)) Wheat 207.17]/24;% 315.93]/24;%	2 2 3
<pre>% e % 4. Ma Mk % 5. Yx % Diet % % Di dry ed Di dry wa % Chece % Ma % at MSG MSL inde</pre>	<pre>end . change of uni atom = [12; 1 pioe = Scompe*M piow = Scompe*M . mol substrate cle = Yx1e ./ (clw = Yx1w ./ (clw = Yx1w ./ (clw = Yx1w ./ (clw = Yx1w ./ (clw = Yx1e ./ (clw = I ./ (clw = I)))))))))))))))))))))))))))))))))))</pre>	t of Yx1 ; 16 Matom; % ea A/g dry pla ones(NG+NI ones(NG+NI 1 man.hour Rice 69.06 82.71 balance or chiometric N 0 0 1 0 0 Kdis(3) 1 0 % indices	: 14; dible aste ant L,1)*Mbioe' L,)*Mbiow' r). From TN Lettuce 2.07 1.77 f the proce c compositi S 0 0 0 0 0 0 0 0 0 0 0 0 0	32; 31); % (mol); % (mol 32.3 Tabl 	<pre>]; % C H (substrate substrate e 17.c p.24 Soybean 6.91 3.85 h compounds ; % 02 Ga ; % C02 Ga ; %</pre>	<pre>) N S P atc / g dry ec / g dry wa Spinach 6.91 10.88 s : as as and ionic and ionic d 'Scompw'</pre>	omik mass dible plan aste plant Onion 6.91 10.9 10.9	t) Wheat 207.17]/24;% 315.93]/24;%	ः व द
<pre>% e % 4. Ma Mk % 5. Y2 % Diet % % Di dry ed Di dry wa % Chec % Aat MSG MSL indee</pre>	<pre>end . change of uni atom = [12;] pioe = Scompe*M piow = Scompe*M i mol substrate cle = Yxle ./ (clw = Yxlw ./ (composition (</pre>	t of Yx1 ; 16 Matom; % ex Matom; % ww cones(NG+NI ones(NG+NI 1 man.hour Rice 69.06 82.71 balance or echiometric N 0 0 1 0 0 0 Kdis(3) 1 0 0 % indices	: ; 14; dible aste ant L,1)*Mbioe' L,)*Mbiow' r). From TN Lettuce 2.07 1.77 f the proce c compositi. S 0 0 0 0 0 0 0 0 0 0 0 0 0	32; 31); % (mol); % (mol 32.3 Tabl Potato 126.79 63.34 ss 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>]; % C H (substrate substrate e 17.c p.24 Soybean 6.91 3.85 h compounds ; % 02 Ga ; % C02 Ga ; %</pre>	<pre>) N S P atc / g dry ec / g dry wa Spinach 6.91 10.88 s : as as as and ionic and ionic d 'Scompw' > Rice</pre>	omik mass dible plan aste plant Onion 6.91 10.9 forms forms	t)) Wheat 207.17]/24;% 315.93]/24;%	2 2 3
<pre>% e % 4. Ma Mk % 5. Y2 % Diet % % Di dry ec Di dry wa % Chece % Aat MSG MSL inde MSSe MSL</pre>	<pre>end . change of uni atom = [12; 1 pioe = Scompe*M piow = Scompw*M . mol substrate cle = Yxle ./ (clw = Yxlw ./ (composition (</pre>	t of Yx1 ; 16 Matom; % ex Matom; % wx /g dry pl: ones(NG+NI ones(NG+NI 1 man.hour Rice 69.06 82.71 balance or echiometric N 0 0 	: 14; dible aste ant L,1)*Mbioe' L,1)*Mbiow' r). From TN Lettuce 2.07 1.77 f the proce c compositi. S 0 0 0 0 0 0 0 0 0 0 0 0 0	32; 31); % (mol 32.3 Tabl Potato 126.79 63.34 ss on of eac P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>]; % C H (substrate substrate e 17.c p.2' Soybean 6.91 3.85 h compounds ; % 02 Ga ; % C02 Ga ; % C02 Ga ; % C02 L ; % NH3 L ; % NO3 ; % C02 L ; % NH3 L ; % NO3 ; % SO4]; % PO4 Scompe' and % Tomate % CMCD</pre>	<pre>) N S P atc / g dry ec / g dry wa f Spinach 6.91 10.88 s : as as as as as as as as as as as as as</pre>	forms	t)) Wheat 207.17]/24;% 315.93]/24;%	2 g
<pre>% e % 4. Ma Mk % 5. Y2 % Diet % % Di dry ec Di dry ec % Chec % Ma % at MSG MSL inde MSSe MSSE MSSE MSSE MSSE MSSE MSSE MSS</pre>	<pre>end . change of uni atom = [12; 1 pioe = Scompe*M piow = Scompe*M piow = Scompw*M . mol substrate cle = Yxle ./ (clw = Yxlw ./ (composition (. composition (. composi</pre>	t of Yx1 ; 16 Matom; % ex Matom; % ww /g dry pl: ones(NG+NI ones(NG+NI 1 man.hour Rice 69.06 82.71 balance or chiometric N 0 0 1 0 0 % indices de); .ce*ones(s: 0 0	: ; 14; dible aste ant L,1)*Mbioe' L,1)*Mbiow' r). From TN Lettuce 2.07 1.77 f the proce c compositi S 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 5 of atoms of ize(inde)))	32; 31); % (mol 32.3 Tabl Potato 126.79 63.34 ss 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>]; % C H (substrate substrate e 17.c p.2' Soybean 6.91 3.85 h compounds ; % 02 Ga ; % C02 Ga ; % NH3 Ga ; % C02 Ga ; % NH3 Ga ; %</pre>	<pre>/ g dry ed / g dry ed / g dry wa Spinach 6.91 10.88 s : as as and ionic and ionic d 'Scompw' o, Rice atom/g dry D Pice</pre>	forms forms edible plan	t)) Wheat 207.17]/24;% 315.93]/24;%	≩ a
<pre>% e % 4. Ma Mt Mt % 5. Y2 % Diet % % Di dry ed Di dry wa % Chec % Aat MSG MSL inde MSSe MSSE MSSe MSSe</pre>	<pre>end . change of uni atom = [12; 1 pioe = Scompe*M piow = Scompe*M piow = Scompw*M . mol substrate cle = Yxle ./ (clw = Yxlw ./ (composition (. composition (. composi</pre>	t of Yxl ; 16 Matom; % ed Matom; % wa 2/g dry pli ones(NG+NI ones(NG+NI 1 man.hour Rice 69.06 82.71 balance or cechiometric N 0 0 1 0 0 Kdis(3) 1 0 0 % indices de); .oe*ones(s:	: ; 14; dible aste ant L,1)*Mbioe' L,1)*Mbiow' r). From TN Lettuce 2.07 1.77 f the proce c compositi S 0 0 0 0 0 0 0 0 0 0 0 0 0	32; 31); % (mol); % (mol 32.3 Tabl Potato 126.79 63.34 ss on of eac P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ; % (mol 32.3 Tabl on of eac P 0 0 0 0 0 ; % (mol 32.3 Tabl on of eac P ; % (mol 32.3 Tabl on of eac N ; % (mol 32.3 Tabl o ; % (mol 32.3 Tabl o ; % (mol 3.3 Tabl o ; % (mol 3.3 Tabl o ; % (mol 3.3 Tabl o ; % (mol 3.3 Tabl o ; % (mol 3.3 Tabl ; % (mol 3.3 Tabl 	<pre>]; % C H (substrate substrate e 17.c p.24 </pre>	<pre>) N S P atc / g dry ec / g dry wa Spinach 6.91 10.88 s : as as and ionic and ionic d 'Scompw' o, Rice atom/g dry o, Rice</pre>	omik mass dible plan aste plant Onion 6.91 10.9 forms forms	t)) Wheat 207.17]/24;% 315.93]/24;%	≩ a

ESA-ESTEC	Overall strategy for the	October 2001		
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 43

```
MSSw= MSSw ./ (Mbiow*ones(size(inde)));
                                                  % CNSP atom/g dry waste plant
% Saving the specific variables of the HPC compartment
NL_5 = NL; NG_5 = NG; NS_5 = NS;
NI_5 = NI;
              NX_5 = NX;
                            NO_5 = NO;
           NX_0 - 11...
B2_5 = B2;
A2_5 = A2;
Kdis_5 = Kdis; kpartN_5 = kpartN;
Fin_5 = Fin; Gin_5 = Gin; VL_5 = VL; VG_5 = VG;
Yxle_5 = Yxle; Yxlw_5 = Yxlw; Diete_5 = Diete; Dietw_5 = Dietw;
MSG_5 = MSG; MSL_5 = MSL; MSSe_5 = MSSe; MSSw_5 = MSSw;
if arret
 disp(' *=*=* HPC : initialization aborted *=*=*'), break
else
 disp(' *** HPC - End of initialization ***')
end
% HPC (5) :
% CG0 = [O2_G CO2_G NH3_G]
% CL0 = [02_L CO2_L NH3_L NO3 SO4 PO4]
% X0 = [O2_G CO2_G NH3_G O2_L CO2_L NH3_L NO3 SO4 PO4 Tomato Rice ...]
```

ESA-ESTEC	Overall strategy for the	October 2001		
ADERSA	10, rue de la Croix Martre	Tel : (33) 1 60 13 53 53	Fax: (33) 1 69 20 05 63	
	91873 PALAISEAU Cedex	E-Mail : adersa@adersa.com		Page 44