ADERSA

MELISSA

Memorandum of Understanding ECT/FG/MMM/97.012

ESTEC/Contract N° 13292/98/NL Contract change notice No 02 of 24 October 2000

TECHNICAL NOTE : 62.7

Dependability analysis of MELISSA Model building methodology – Physical description

Version : 1 Issue : 0

L. SAVARY – A. BAHET - J.-L. TESTUD

June 2002

adersa

 10, rue de la Croix Martre

 91873 PALAISEAU Cedex

 Phone
 : (33) 1 60 13 53 53

 Fax
 : (33) 1 69 20 05 63

 Email
 : adersa@adersa.com

REFERENCE	INDICE	DATE
TN 62.7	1.0	2002/06/10

SUMMARY

1.	PRE	LIMINARIES	4
	1.1	Document historical record	4
	1.2	List of the modified pages	4
•	OTU		-
2.			
	2.1 2.2	Adersa contacts	
		Data source	
	2.3	Reference documents	5
3.	REC	UIREMENTS	6
	3.1	Requirements definition	
	3.2	Description reminders of the MELISSA loop	6
		3.2.1 Principle	6
4.	INTE	RODUCTION:	8
ч.	4.1	Typical timing of a safety analysis	
	4.2	Presentation of work	
	4.3	Principe of modelling	
	4.4	Main characteristics of the M3C modelling tool	
	4.5	Modelling schedule	
_			40
5.	5.1	ISSA LOOP AND COMPARTMENTS DIAGRAM : MELISSA Loop :	
	0.1	5.1.1 Diagram of the loop :	
		5.1.2 Description of links between compartments of MELISSA Loop:	
		5.1.3 Descriptions of the flows between MELISSA Loop compartments :	
	5.2	DIAGRAMS OF COMPARTMENTS :	
	•		
		5.2.1 COMPARTMENT 0 :	
		5.2.1 COMPARTMENT 0 :	15
		5.2.2 COMPARTMENT I :	15 16
		5.2.2 COMPARTMENT I : 5.2.3 COMPARTMENT II :	15 16 17
		5.2.2 COMPARTMENT I :	15 16 17 18
		5.2.2 COMPARTMENT I : 5.2.3 COMPARTMENT II : 5.2.4 COMPARTMENT III :	15 16 17 18 19
C	мог	5.2.2 COMPARTMENT I : 5.2.3 COMPARTMENT II : 5.2.4 COMPARTMENT III : 5.2.5 COMPARTMENT IV : 5.2.6 COMPARTMENT IVHP :	15 16 17 18 19 20
6.		5.2.2 COMPARTMENT I :	15 16 17 18 19 20 21
6.	6.1	5.2.2 COMPARTMENT I : 5.2.3 COMPARTMENT II : 5.2.4 COMPARTMENT III : 5.2.5 COMPARTMENT IV : 5.2.6 COMPARTMENT IV HP : DELLING: Hypothesis on the MELISSA loop :	15 16 17 18 19 20 21
6.		5.2.2 COMPARTMENT I : 5.2.3 COMPARTMENT II : 5.2.4 COMPARTMENT III : 5.2.5 COMPARTMENT IV : 5.2.6 COMPARTMENT IV HP : DELLING: Hypothesis on the MELISSA loop : Elements of model :	15 16 17 18 19 20 21 21 21
6.	6.1	5.2.2 COMPARTMENT I : 5.2.3 COMPARTMENT II : 5.2.4 COMPARTMENT III : 5.2.5 COMPARTMENT IV : 5.2.6 COMPARTMENT IV HP : DELLING: Hypothesis on the MELISSA loop :	15 16 17 18 19 20 21 21 21 21
	6.1 6.2	5.2.2 COMPARTMENT I : 5.2.3 COMPARTMENT II : 5.2.4 COMPARTMENT III : 5.2.5 COMPARTMENT IV : 5.2.6 COMPARTMENT IV HP : DELLING: Hypothesis on the MELISSA loop : Elements of model : 6.2.1 General elements: 6.2.2 Others elements regarding the safety analysis:	15 16 17 18 20 21 21 21 21 21
6 . 7 .	6.1 6.2 COE	5.2.2 COMPARTMENT I : 5.2.3 COMPARTMENT II : 5.2.4 COMPARTMENT III : 5.2.5 COMPARTMENT IV : 5.2.6 COMPARTMENT IV HP : 5.2.6 COMPARTMENT IV HP : DELLING: Hypothesis on the MELISSA loop : Elements of model : 6.2.1 General elements: 6.2.2 Others elements regarding the safety analysis: ING IN M3C :	15 16 17 18 19 20 21 21 21 21 22 22
	6.1 6.2 COE 7.1	5.2.2 COMPARTMENT I : 5.2.3 COMPARTMENT II : 5.2.4 COMPARTMENT III : 5.2.5 COMPARTMENT IV : 5.2.6 COMPARTMENT IVHP : PELLING: Hypothesis on the MELISSA loop : Elements of model : 6.2.1 General elements: 6.2.2 Others elements regarding the safety analysis: ING IN M3C : Directory :	15 16 17 18 19 20 21 21 21 21 21 21 21 21 21 21 21
	6.1 6.2 COE	5.2.2 COMPARTMENT I : 5.2.3 COMPARTMENT II : 5.2.4 COMPARTMENT III : 5.2.5 COMPARTMENT IV : 5.2.6 COMPARTMENT IV HP : 5.2.6 COMPARTMENT IV HP : OELLING: Hypothesis on the MELISSA loop : Elements of model : 6.2.1 General elements: 6.2.2 Others elements regarding the safety analysis: ING IN M3C : Directory : General elements of a model :	15 16 17 18 20 21
	6.1 6.2 COE 7.1	5.2.2 COMPARTMENT I : 5.2.3 COMPARTMENT II : 5.2.4 COMPARTMENT III : 5.2.5 COMPARTMENT IV : 5.2.6 COMPARTMENT IVHP : PELLING: Hypothesis on the MELISSA loop : Elements of model : 6.2.1 General elements: 6.2.2 Others elements regarding the safety analysis: ING IN M3C : Directory :	15 16 17 18 20 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21

REFERENCE	INDICE	DATE
TN 62.7	1.0	2002/06/10

		7.2.3	Functions :	
		7.2.4	Flow :	
8.	RES	ULTS :		31
	8.1		ilation of model :	
	8.2	Directo	ories of results files :	31
	8.3	Visual	ization of results	31
		8.3.1	Textual Visualization:	31
		8.3.2	Graphical visualization :	33
9.	CON		ONS :	39
10.	DEV	ELOPN	IENT PROSPECTS	40
			ardisation and consolidation of MELISSA loop SDF models:	
			a strategy and a process for safety analysis	

REFERENCE	INDICE	DATE
TN 62.7	1.0	2002/06/10

1. PRELIMINARIES

1.1 Document historical record

Date	Version	Issue	Author	Up to date object
2002/02/20	1	0	JL Testud	Creation
			L. Savary	
			A. Bahet	
2002/06/10	1	0	N. Braunwald	Verification

1.2 List of the modified pages

All pages from this edition are located at the last document index

Without object for this edition

REFERENCE	INDICE	DATE
TN 62.7	1.0	2002/06/10

2. OTHER INFORMATIONS

2.1 Adersa contacts

People in charge of:

- Functional aspects,
 - Jean-Louis TESTUD (01.60.13.53.37)
- Technical aspects concerning process
 - Jean-Joseph LECLERCQ (01.60.13.53.27)
- Technical aspects concerning industrial coding,
 - Azzedine BAHET (01.60.13.53.40)
 - Ninon BRAUNWALD (01.60.13.53.52)

2.2 Data source

TN 62-7_0 VA.doc

2.3 Reference documents

- ESA Documents:
 - TN 18-1
 - TN 37-6
 - TN 47-5
 - ...
- UAB Documents
 - Anne VERNEREY's thesis
 - Julio PEREZ's thesis
 - ...

3. REQUIREMENTS

3.1 Requirements definition

The aim of this memo is to provide the relevant information in order to offer technical solutions for the Melissa driving system described herewith.

3.2 Description reminders of the MELISSA loop

3.2.1 Principle

Melissa project (Micro Ecological Life Support System Alternative) is developed by the European Space Agency (ESA) for an ecosystem mainly based on the microorganisms. It claims to be a tool for artificial ecosystem understanding and for a next LIFE SUPPORT SYSTEM for long spatial flights (Mergeay and al, 1988).

The Melissa project is based on the eatable biomass recovery from wastage, CO2 and minerals and using the light as energy source for photosynthesis.

The process is composed of 5 sub-systems (called compartments) strongly interconnected through liquid, solid or gas exchanges. These material exchanges are shown on graphic representation in order to materialise existing links between sub-systems. The crew compartment (COMP 5) mainly consists of human staff that consumes oxygen and biomass and produces waste and CO2. Other compartments are made with the necessary elements for the waste reprocessing and the production of nutritive elements and oxygen (bioreactors, separators ...)

The diagrams below describe the main loop and links organization.

REFERENCE	INDICE	DATE
TN 62.7	1.0	2002/06/10

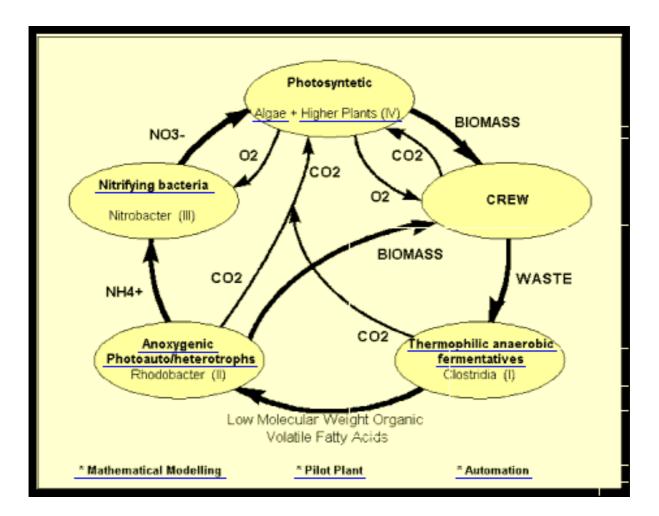


Diagram N ° 1 : Principle schema of the Melissa loop (from ESA)

٦

4. INTRODUCTION:

Г

Safety analysis is a large and crucial problem for MELISSA

- specially for a mission which is long duration (> 30 months), long distance (ISS, Mars, ...), under hard constraints (weight, spare part limited)
- specially for a process which is the result of a multi partner work (more than 7 teams), and is composed of several interconnected processes designed by different teams.

It is important to act as soon as possible and with the efficient tools and partners to solve correctly these problems.

	Process
fety Analysis (SDF) closes: Reliability Maintainability Availability Safety	 Objectives of a safety analysis: Identification of the failures Evaluation of their importance Detection (choice of sensors) Prevision Control (procedures) Design of a fault tolerant system
Reliability Maintainability Availability	 Evaluation of their import Detection (choice of sense Prevision Control (procedures)

We have used an analytical method for complex system to model MELISSA process and to prepare a dependability analysis.

REFERENCE	INDICE	DATE
TN 62.7	1.0	2002/06/10

This approach is based on M3C concept for modelling according three distinct viewpoints called layers (physical plane, functional plane and control plane). This method helps to verify safety requirements at complex system designing time.

This model building is expressed by a construction methodology of models, supported by computer aids for checking and validation of generated models. It is based on the description of the model in text file forms, which makes possible a certain rigour for the model description, and easier output process and will apply on MELISSA loop definition.

4.1 Typical timing of a safety analysis

If we describe an ideal situation, safety analysis comprises four main steps:

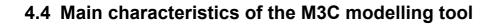
- Step I Technical and functional analysis
- Step II Qualitative analysis
- Step III Quantitative analysis
- Step IV Conclusions and synthesis

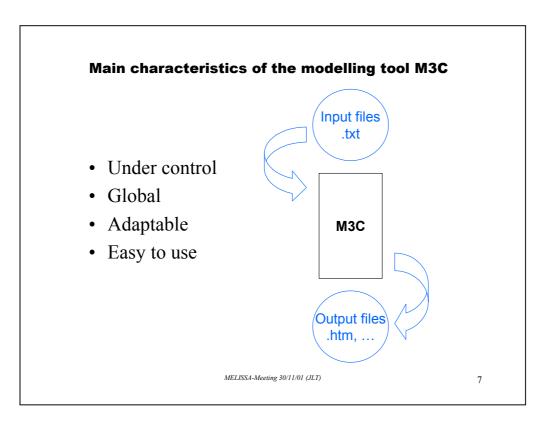
If verification of objectives cannot be proved, then design must be altered in order to satisfy these objectives along these four steps, we adapt the project and we act the four steps one more time until objectives are reached.

Interaction allows to modify system modelling and iterating objectives check ands system modification must lead to a safety-proven system design.

4.2 Presentation of work

Main objective - Propose a first global model of MELISSA loop useful for safety analysis. The model is static and it represents the loop under three points of view (physical, functional and control)


4.3 Principe of modelling

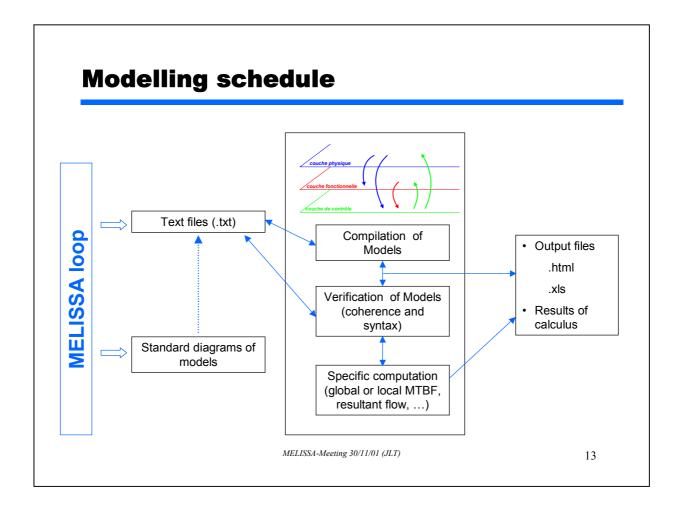

To represent a complex model, it seems easier to consider several complementary layers:

- Physical layer description of components of the system without consideration with functions they have to ensure
- Functional layer description of system functionalities
- Control layer description of system operating modes

We will then obtain three linked models which hold the different properties of the system.

All the models are built with the help of a software called M3C ("Modelling according to 3 layers").

Under control – M3C software was developed by ADERSA and fit needs of MELISSA problem at this step of the study. ADERSA owns all the rights on this software.


Global – Several linked points of view

Adaptable – Open software M3C can follow system evolutions (methodology and/or technology) and accept extension of functionalities.

Easy to use – Useful to support exchange between partners, to communicate models, to define standards, ...

REFERENCE	INDICE	DATE
TN 62.7	1.0	2002/06/10

4.5 Modelling schedule

5. MELISSA LOOP AND COMPARTMENTS DIAGRAM :

5.1 MELISSA Loop :

5.1.1 Diagram of the loop :

In the figure 1, MELISSA loop is shown as a set of interconnected compartments with the use of links that describe flows of material exchanges.

Exchanged materials are described in the following table.

links be compartr MELISS	nents of	Comp. I	Comp. II	Comp. III	Comp. IV	Comp. IV HP	Comp. 0	ЕХТ
Comp. I	One input from		BN		BS	BN	U + F	
5x5	One output to		C + V		С	С		D
Comp. II	One input from	C + V						
2x4	One output to	BN		Nh		С	В	
Comp. III	One input from		Nh			0		
2x3	One output to				No + C			D
Comp. IV	One input from	С		No + C				
3x5	One output to	BS				No + O	B + O	
Comp. IV HP	One input from	С	С		No + O		С	С
6x7	One output to	BN		0			B + O + H	O+D
Comp 0	One input from		В		B + O	B + O + H		В
7x3	One output to	U + F				С		
EXT	One input from	D		D		O+D		
4x2	One output to					С	В	

5.1.2 Description of links between compartments of MELISSA Loop:

Table A. Description of links between compartments of the MELISSA Loop

	From	То		Term used in M3C
;	I	II	Gas - CO2	CI_CII_CO2
;	I	IV	Gas - CO2	CI_CIV_CO2
0	I	IV HP	Gas - CO2	CI_CIVHP_CO2
2	0	IV HP	Gas - CO2	C0_CIVHP_CO2
C	11	IV HP	Gas - CO2	CII_CIVHP_CO2
C	111	IV	Gas - CO2	CIII_CIV_CO2
C	IV	IV HP	Gas - O2	CIV_CIVHP_O2
C	IV	0	Gas - 02	CIV_C0_02
C	IV HP	0	Gas - 02	CIVHP_C0_O2
C	IV HP	111	Gas - 02	CIVHP_CIII_02
C	EXT	IVHP	Gas - CO2	EXT_CIVHP_CO2
C	IVHP	EXT	Gas - 02	CIVHP_EXT_O2
U	0	I	Liquid - URINE	C0_CI_URINE
V	1	II	Liquid - Volatil Fatty Acids (VFA) diluted	CI_CII_VFA
н	IV HP	0	Liquid - H2O	CIVHP_C0_H20
Nh	11	Ш	Liquid - NH3 Ammoniaque	CII_CIII_NH3
No	111	IV	Liquid - NO3 Nitrates	CIII_CIV_NO3
No	IV	IV HP	Liquid - NO3 Nitrates	CIV_CIVHP_NO3
В	EXT	0	Solid - Edible BIOMASS (External Food)	EXT_C0_BIOMASSE_CONS
B	IV	0	Solid - Edible BIOMASS	CIV_C0_Biomasse_CONS
B	IV HP	0	Solid - Edible BIOMASSE	CIVHP_C0_Biomasse_CONS
BN	11	I	Solid - Non edible BIOMASSE	CII_CI_Biomasse_NCONS
BN	IV HP	I	Solid - Non edible BIOMASSE	CIVHP_CI_Biomasse_NCONS
BS	IV	I	Solid - BIOMASS (Spirulina excess)	CIV_CI_Biomasse_SPIRU
D	IVHP	EXT	Solid - Wastes	CIVHP_EXT_BIOMASSE_NCC
)	111	EXT	Solid - Wastes	CIII_EXT_BIOMASSE_NCONS

5.1.3 Descriptions of the flows between MELISSA Loop compartments :

REFERENCE	INDICE	DATE
TN 62.7	1.0	2002/06/10

D	I	EXT	Solid - Wastes	CI_EXT_BIOMASSE_NCONS
F	0	I	Solid FAECES + liquid	C0_CI_Faeces

Table B. Description of the flows between MELISSA Loop compartments

Remark: All information in this document (particularly the precedent tables A and B, and the next diagrams have to be validated by all concerned partner of the project.

5.2 DIAGRAMS OF COMPARTMENTS :

We represent, in the figures 2 to 7, all diagrams of MELISSA loop compartments.

REFERENCE	INDICE	DATE
TN 62.7	1.0	2002/06/10

5.2.1 COMPARTMENT 0 :

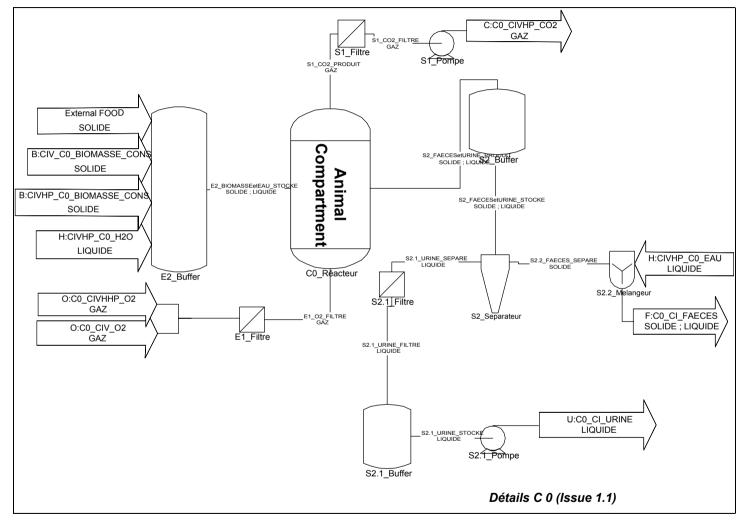


Figure 1 - General overview of Animal compartment configuration

5.2.2 COMPARTMENT I :

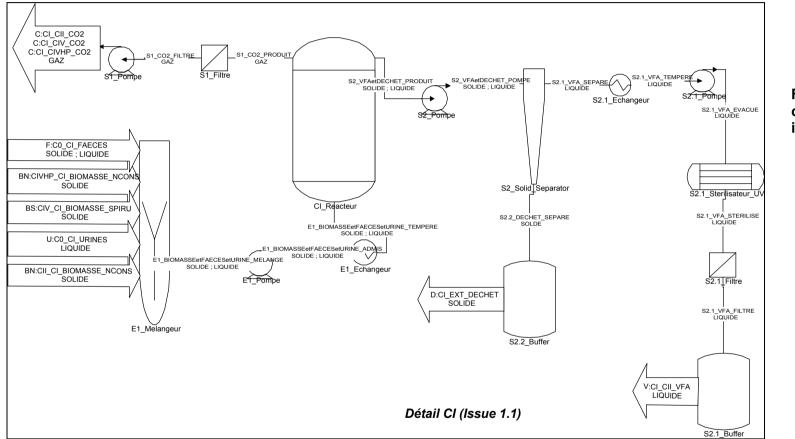


Figure 2 - General overview of compartment I interconnections

REFERENCE	INDICE	DATE
TN 62.7	1.0	2002/06/10

5.2.3 COMPARTMENT II :

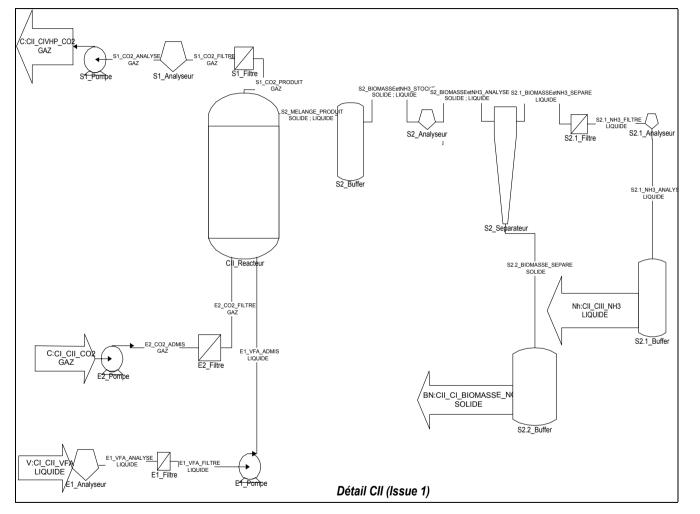


Figure 3 - General overview of Compartment Il interconnections

REFERENCE	INDICE	DATE
TN 62.7	1.0	2002/06/10

5.2.4 COMPARTMENT III :

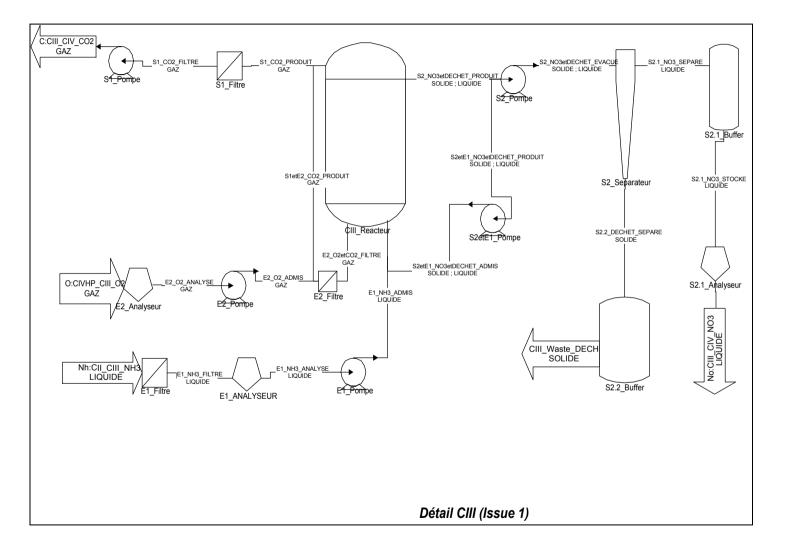
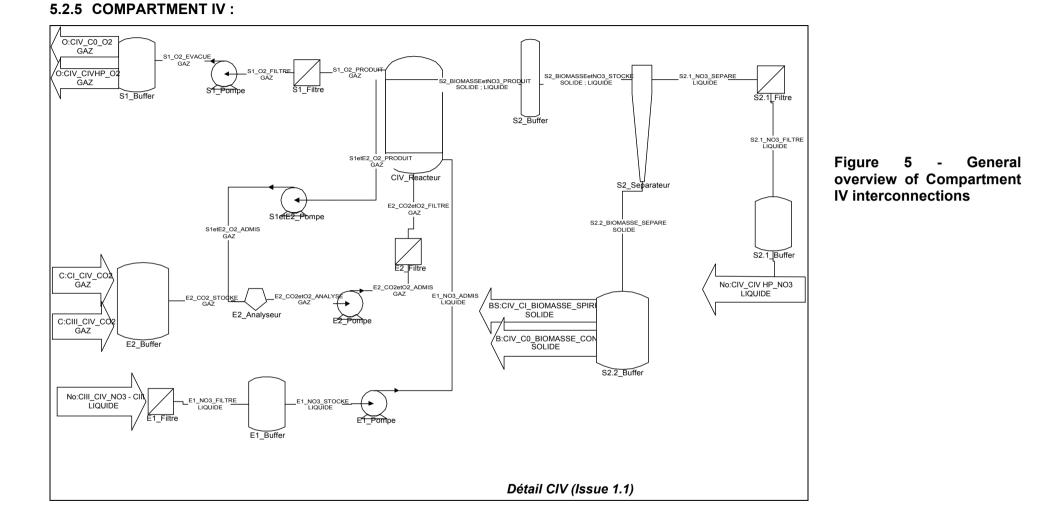



Figure 4 - General overview of Compartment Ill interconnections

REFERENCE	INDICE	DATE
TN 62.7	1.0	2002/06/10

REFERENCE	INDICE	DATE
TN 62.7	1.0	2002/06/10

5.2.6 COMPARTMENT IVHP :

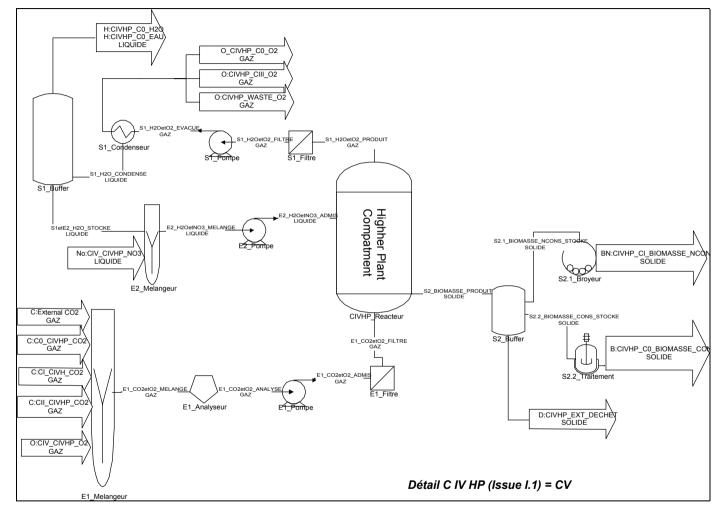


Figure 6 - General overview of higher plant compartment interconnections

6. MODELLING:

6.1 Hypothesis on the MELISSA loop :

- \Rightarrow For simplification, exchange flows between compartments will be assumed as perfect ones hence the non-necessity to represent them in the model.
- \Rightarrow MELISSA is modelled at its nearly highest complexity level. So, the reactor of each compartment is supposed to be one equipment fulfilling one function.

6.2 Elements of model :

6.2.1 General elements:

Equipment :

MELISSA general way of naming has been kept for describing entities in M3C description text files. Each equipment displays their text field created for this need: the different links that are tied between them and through which the flows being propagated are as the same nature as their specified links.

Equipments are described in an equipment description file. Their functions are specified and all links for other ones are listed.

Links :

In M3C models, flows are specified according to their physical state that can be one or either of the three different kinds: solid, liquid and gas.

The given kind of a flow must be specified.

If real nature of a flow is a mixing of two or three different kinds, a particular flow must be created in the model for each.

- \Rightarrow Solid link: medium propagation of the solid flows
- \Rightarrow Liquid link: medium propagation of the liquid flows
- \Rightarrow Gas link: medium propagation of the gas flows

REFERENCE	INDICE	DATE
TN 62.7	1.0	2002/06/10

Generally speaking, theses links will be seen on one hand, as a way to connect the different equipment which are the compartments, and on the other hand, as a support through which the different flows of the same nature as the links will propagate.

Functions :

A name has been given to the functions, which show the functionality equipment, and specify in the description assigned to this entity, the right role to play. So functions work as black boxes transforming input flows into output ones.

Flows :

For the flows, we have kept MELISSA project names The precise name and nature of this entity is stated in the description. Each flow shows in the field that is combined the link through which it is lead.

The MELISSA loop has been designed for the treatment of human and vegetal wastes and then to enable life on board a space shuttle. This one is made of all the flows moving across all equipments, to come back sometimes to their original equipment and be chemically transformed. To avoid theses problems that we can encounter with M3C, we suggest an appropriate coding as shown in the §4.

6.2.2 Others elements regarding the safety analysis:

The MELISSA loop is a recurrent process and intend a crew to live aboard a space shuttle. This one contains the compartments which are composed of machines dedicated to the treatment and to recycle the flows of any nature. For safety analysis application, we use the following functions in the MELISSA model:

MTTF calculus :

The MTTF (Mean Time To Failure) indicates the working time of an equipment before a first failure. This value must be calculated for each equipment, using a parameter formula.

Syntax:

Mttf Value ;

 \Rightarrow Mttf, is an indication for the program that a MTTF type value is required for an Equipment \Rightarrow Value, is the value given to MTTF

Others functions are used for time calculus in MELISSA model:

MTBF: Mean Time Between Failure MTTR: Mean Time to Repair MUT: Mean Up Time MDT: Mean Down Time

Global MTTF calculus :

Global MTTF allows to handle a lot of equipment like those with MTTF that are equivalent to all required equipment.

Syntax:

Glob_Mttf Name { Equipment_start ; Equipment_end ; }

- \Rightarrow Glob_Mttf indicates for the program that we want to do a global MTTF calculus
- \Rightarrow Name is the name given to global MTTF that we want to calculate
- ⇒ Equipment_start and Equipment_end flank the Equipment that will use for the MTTF calculus

Calculus of flows:

The calculus of a flow which goes from an equipment 1 to an equipment 2, is carried out by the following syntax:

```
"Calculus_Flow PF1 {
Flow ;
Equipment1 ;
Equipment2 ;
}"
```

 \Rightarrow Calculus_Flow: Shows that we want to calculate the flow between two equipments

- \Rightarrow PF1: Name of this calculus
- \Rightarrow Flow: The flow to calculate
- \Rightarrow Equipment1: Start equipment
- \Rightarrow Equipment2: End equipment

We have two states of working for different entities (flows and equipment): Normal or HS (out of order). The user must specify for each of these entities:

En_Etat State ;

- \Rightarrow En_Etat: Shows that we want to define the working state of an entity
- \Rightarrow State: Normal or HS (out of order)
- \Rightarrow If equipment is in the HS State, then all the flows from this equipment will have zero value
- \Rightarrow If flow of an exit flows composition flows is in HS State, the resulting flow will have the zero value

Valeur V;

- \Rightarrow Valeur: Shows that we want to give a value to a flow
- \Rightarrow V: Flow value

Output flows are computed using input flows by applying the following formula:

Flow leaving = Flow1*c1 + Flow2*c2 + Flow3*c3

Where Flow1, Flow2, Flow3, are the input flows, and c1, c2, c3, their related coefficients:

Coef { c1 ; c2 ; c3 ; }, In the output flow.

Input flows are defined according to the following syntax:

Dependences { Flow1 ; Flow2 ; Flow3 ; }

 \Rightarrow Dependences: Shows what are the input flows of an input one

We must have as many coefficients as dependences Flows. The program is designed like this:

- \Rightarrow If a F1 flow as depend the F flow is placed in HS state that its value is to « 0 », then the Flow F will be place to « 0 » value, and in HS State.
- ⇒ If Equipment is placed in HS State, then all the exit flows of this Equipment will be set in HS State, with a zero value.

REFERENCE	INDICE	DATE
TN 62.7	1.0	2002/06/10

In accordance with the coefficients and the value calculated for the exit flow, it is possible that the exit flow oscillates between certain values, which are considered like normal, out of order, or as an intermediate state. A threshold can be specified in order to take in consideration the alternation of flows values. If the flow is superior to this value, it is considered in a Normal state, otherwise it is in an HS state. Threshold syntax is:

Threshold Value ;

 \Rightarrow Threshold: Shows that the flow admit a limit value

 \Rightarrow Value: value of this limit

Calculus of the costs:

A cost parameter can be specified for each equipment. It can be defined using the following syntax:

Eq_cost Value ;

- \Rightarrow Eq_cost: shows to the program that we want to give a cost to Equipment
- \Rightarrow Value: shows the cost of this Equipment

REFERENCE	INDICE	DATE
TN 62.7	1.0	2002/06/10

7. CODING IN M3C :

7.1 Directory :

To describe a model, we must be placed in the models directory, and create a working directory. In this directory, we can open a file which has a « m3c » extent (example: MELISSA.m3c), and describe our model.

7.2 General elements of a model :

7.2.1 Equipment :

In the description file, equipments are written in accordance with the following coding:

"Compartment_Link _ Equipment_ N° of Equipment"

Example of coding :

\Rightarrow C0_E2_Buffer:	Compartment : C0 Link: E2 like entrance 2 Equipment: Buffer	
\Rightarrow CII_S2.1_Filter:	Compartment : CII Link: S2.1 like exit 2.1 (in this case, the S2 link is separate in lots sub links) Equipment: Filter	
\Rightarrow CIII_S2etE1_Pomp	pe: Compartment : CIII Common link between: S2 and E1	

The equipment number is optional. However, It is getting necessary to show it when the same equipment is present once again on the same link.

Equipment: Buffer

REFERENCE	INDICE	DATE
TN 62.7	1.0	2002/06/10

The letters E and S indicates respectively the entrance and the exit of the Reactor. This one is written like this:

"Compartment_Reactor" (example: CI_Reactor, CII_Reactor...)

Syntax example :

This is a syntax example regarding the filter at the entrance 1 of Reactor in the compartment C0:

```
// Bronche_E1
Equipment C0_E1_Filter{
Ent_Etat Normal ;
Description "02 filtering" ;
Contact{ Gas ; }
}
```

7.2.2 Links :

In the MELISSA model, three Links are defined:

 $\Rightarrow The Gas Link$ $\Rightarrow The Liquid Link$ $\Rightarrow The Solid Link$

Example of syntax :

Here is the syntax of these three links:

REFERENCE	INDICE	DATE
TN 62.7	1.0	2002/06/10

```
Description "Solid" ;
}
```

7.2.3 Functions :

The functions are written in accordance with the following coding:

"Compartment_Link_ Function"

Example of coding :

\Rightarrow C0_E1_Filter :	Compartment : C0 Link: E1 like entrance 1 Function: "Filter"
\Rightarrow CII S2.1 Analyze:	Compartment · CII
	Link: S2.1 like exit 2.1 (in this case, the link S2 is separated in lot of sub links) Function: "Analyze"
\Rightarrow CIII_S2etE1_Pump	: Compartment : CIII Link between the exit 2 and the input 1 Function: "Pump"

The Equipment Reactor function is described like this:

"Compartment _Reactor Function" (example: CIV_Product_Biomass)

Example of syntax :

This example regards the function "Filter" at the entrance1 of Reactor in the compartment C0.

// Link_E1

```
Function C0_E1_Filter {
Description "02 Filtering" ;
Use_Equipment { C0_E1_Filter ; }
Inputs { CIV_C0_02; CIVHP_C0_02; }
Outputs { C0_E1_02_FILTER ; } }
```

7.2.4 Flow :

Example of coding of the inter-compartment flows:

The inter-compartment flows are written in accordance with the following coding:

"Compartment Link Flow Action suffered

\Rightarrow C0_S1_CO2_FILTER :	Compartmen	nt : C0	
	Link: S1 like	e exit 1	
	Flow: CO2 "	filtered	"
\Rightarrow CIII_S2.1_NO3_SEPARA	-	partmen	
			ke exit 2.1 (in this situation, the link S2 is
	separa	ated in	lot of sub links)
	Flow	: NO3 '	"separated"
\Rightarrow CIII_S2andE1_NO3andW.	ASTE_PROD	UCT:	Compartment CIII
			Link between: S2 and E1
			Flow : NO3 and WASTE product

Example of coding of the commons Flows :

That has the common flows between the compartments. They are described as follow:

"Original Compartment destination Compartment Flow"

We quote like example the following flows:

C0_CI_URINE: Urine Flow in moving from C0 compartment to the CI compartment

CIII_CIV_CO2: CO2 Flow in moving from CIII compartment to the CIV compartment

Example of syntax for commons Flows :

```
// FLOW Link_E1
Flow C0_E1_O2_FILTER {
Description "Input flow O2 Filtration";
```

REFERENCE	INDICE	DATE
TN 62.7	1.0	2002/06/10

```
Use_Link { Gas ; }
}
```

Example of syntax of commons Flows:

REFERENCE	INDICE	DATE
TN 62.7	1.0	2002/06/10

8. RESULTS :

8.1 Compilation of model :

For the model compilation, we use the Makefile given with the M3C code. So, that is advisable to enter in CYGWIN window the "make" command.

8.2 Directories of results files :

The files which result from the description file compilation will be created in the Bd and Htm directories.

8.3 Visualization of results

Once, the file is compiled without errors, we can visualize the obtained results:

8.3.1 Textual Visualization:

Text files:

The "output.txt" files allows the visualization of result in textual shape.

HTML files:

The visualization of the "htm file" is carried out in the Htm directory. So, that is advisable to click on one of htm files or, to start Netscape Navigator and to open the required file. The htm files possess the particularity to have at one's disposal reference links between the different htm files. That implicates the possibility to surf from one file to another by clicking on the elements of the opened file.

REFERENCE	INDICE	DATE
TN 62.7	1.0	2002/06/10

- \Rightarrow The arboequ.htm, arbofct.htm, arboflx.htm, arbolie.htm files, display the list of the respective tree diagrams of equipment, functions, flows, links.
- ⇒ The equip.htm, etat.htm, flux.htm, fonction.htm, lien.htm files, represent textually the respective entities: equipment, state, flow, function, link, and the entities, which they directly depend.

quipments Tree Structure: - Netscape er Edition Afficher Aller Communicator <u>A</u> ide	
💉 🔉 🎦 🚓 🌽 🖉 🖆	nop Arrêter
Peceserit Suivant Nechaiger Accueir Nechercher Guide Implimier Securite Sin § Signets A Adresse: [file:////SAGITTA/D/M3C/azzedine/esa/m3c/modeles/Melissa_M_anglais/Htm/arbon	
7	
quipment tree structure	
C0 E1 Filter Filtering of O2	
<u>C0 E2 Buffer</u> Container of the eatable products	
CO ReactorSupplying in eatable products and in O2 et rejection of CO2	
CO S1 Filter	
<u>CO S1 Pump</u> Pump to supply CO2 of Compart_CO and alimentat of Compa	irt_CIVHP
C0 S2.1 Buffer Container of urines	
C0 S2.1 Filter	**
<u>C0 S2.1 Pump</u> Pump of supplying urines and supplying of Compartment_C	1
<u>C0 S2.2 Mixer</u> Mix water with waste coming from Separator_4	
CO S2 Buffer Container of waste	
CO S2 Separator	
<u>CIII E1 Analyzer</u> Analysis of Ammoniaque	
<u>CIII E1 Filter</u> Ammoniaque Filtering at the entrance of Reactor_CIII CIII E1 Pump Nutrition in Ammoniaque of Reactor_CIII	
CIII E2 Analyzer	
CIII E2 Filter	
CIII E2 PumpNutrition in O2 of Reactor CIII	
CIII ReactorNitrification : transformation of Ammoniague into Nitrate	
CIII S1 Filter	
CIII S1 Pump	
CIII S2.1 Analyzer	
<u>CIII S2.1 Buffer</u> Storage of liquid at the exit of Separator_3.4	
CIII S2.2 BufferStorage of Solid at the exit of Separator	
CIII S2 Pump	
CIII S2 SeparatorSeparation Liquid Solid at the exit of Reactor CIII	
CIII S2andE1 PumpRecycling Reactor CIII	
CII E1 AnalyzerAnalysis of VFA	
CII E1 FilterFiltering of VFA in entrance of Reactor_CII	
Document : chargé	= 💥 🤐 🔊
émarrer 🛛 🧭 📓 🍮 🔕 🖉 🖾 📴 🋷 😰 🐨 🚫 👯 🚼 🏙 🏈 🗍 🕅 TN 62-7_0 VA.d [

Window 2. arboequ.htm

Clicking on one of the Equipment of arboequ.htm file, opens the equip.htm file which contains all the Equipment and the entities that are directly linked (see window 3).

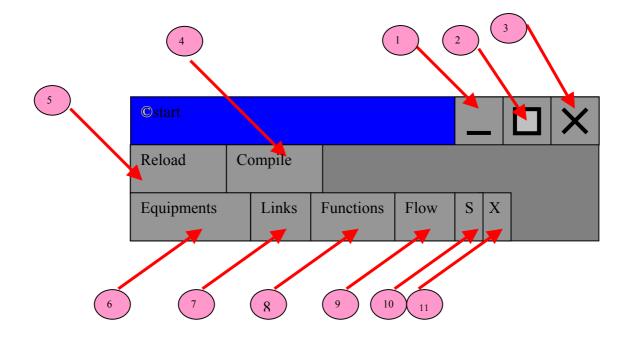
REFERENCE	INDICE	DATE
TN 62.7	1.0	2002/06/10

W Environmente Helenand	- 8 ×
Equipments - Netscape Fichier Edition Afficher Aller Communicator Aide	
Victoria Accueil Rechercher Guide Imprimer Sécurité Shop	Arrêter
🦋 Signets 🙏 Adresse : file:////SAGITTA/D/M3C/azzedine/esa/m3c/modeles/Melissa_M_anglais/Htm/equip.htm	🗾 🍘 Thios connexes
Equipments Description	×
C0_E1_Filter	
Filtering of O2	
 C0\C0_layer_physical_branch_E1.m3c3 No father equipment. Links in contact :<u>Gas</u> Supported Functions : <u>C0_E1_Filt</u> 	
C0_E2_Buffer	
Container of the eatable products	
 C0\C0_layer_physical_branch_E2.m3c3 No father equipment. 	
Links in contact <u>Liquid Solid</u> Supported Functions : C0 E2 Stock	
• Supported Functions : CO 122 Stock	
C0_Reactor	
	<u> </u>
🏦 Démarrer 🛛 🧭 📓 🥔 🔍 🖉 🖾 📴 🌆 🖾 🐨 🐼 🐺 🚼 🏙 🏈 🗌 📾 TN 62-7_0 VA.d 🔂 Htt	

Window 3. equip.htm

- \Rightarrow The arbre.htm file, displays causality tree of physical and functional plans
- \Rightarrow The arbref.htm file, displays causality tree of functional plan
- \Rightarrow The doc.htm, displays causality tree of physical and functional plans without details
- \Rightarrow The ectrl.htm file, displays the entities list in shape of hierarchic trees, lists of the objects and causal trees.

8.3.2 Graphical visualization :


TCL/TK files:

To visualize the TCL/TK graphical files in CYGWIN or in UNIX, it is essential to change the path in the "start.tcl" file, which is responsible for running of graphical application.

In this file, we must change the following parameters:

- ⇒ set common_m3c "c:\\Directory1\\Directory2\\common_m3c", showing the right path of common_m3c directory.
- \Rightarrow set directory "c:\\Directory1\\Directory2\\modeles\\Rep", showing the right path of work directory container the file of description.

Then, we can start the graphical application with the "./start.tcl" command.

The buttons numbers correspond to:

1. Minimal reduction of operating environment

2. Zoom total screen of operating environment

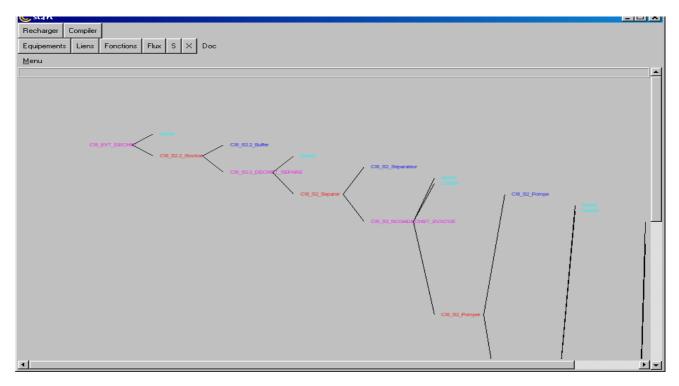
3. Close operating environment

4. When we change the description file, we must compile then load again to allow the new graphical version of the application.

5. When we change the file of description, we must compile then recharge to allow the new graphical version of the application.

6. Display the Equipment list

7. Display the Links list


8. Display the Functions list

9. Display the Flows list

10. Display the tree, which is composed of functional and physical plans

11. Display the tree compound of functional, physical and control plans.

Clicking on the S button, we will have the following result in the window 3:

Window 4. TCL-TK screen

REFERENCE	INDICE	DATE
TN 62.7	1.0	2002/06/10

EXCEL files:

To visualize the graphical application in EXCEL, we must open the two files: doc.xls and m3c.xls, and activate the commands in EXCEL.

The visualization of doc.xls file allows to obtain this operating environment type:

Microsoft Excel - doc xls File M3C 2
Refresh E L F X G C

Clicking on M3C icon, we must click on "reload file" to load again the description file. (See below diagram)

The different texts that appear when clicking on the M3C icon mean:

"Close file", close the description file

" Reload file", reload the description file

"Button => place button", place the buttons "drawing button" (see below figure)

"Button => suppress all buttons", remove the buttons "drawing buttons" (see below figure)

"Redraw links", draw the links which tie the Equipment

"Redraw links all figures", draw the Links which tie all the Equipment from all the figures

- " Update texts and links", to update texts and links
- " Colour texts", colour the texts

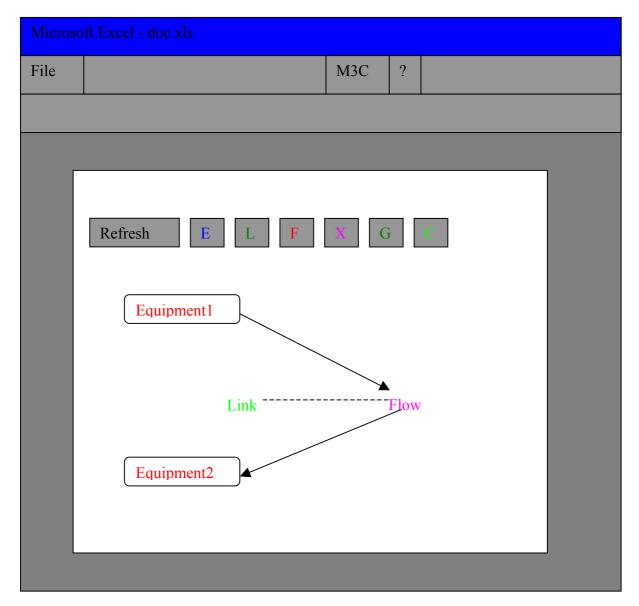
- " Insert=> Equipment", to insert an Equipment
- " Insert => Lien", to insert a Link
- " Insert => Function", to insert a Function
- " Insert => Flux", to insert a Flow
- " Insert => Graph", to insert a Graph
- " Insert => Control flow", to insert a control Flow

The draw buttons:

- " Redraw", allows to draw the links
- " E", allows to insert an Equipment
- " L", allows to insert a link
- " F", allows to insert a function
- " X", allows to insert a flow
- " G", allows to insert a control graphic
- " C", allows to insert a control flow

To insert any entity, we must:

Click on "M3C", then "Insert", then "Equipment" Or click on the "E" draw button.


In that way, We obtain the following figure:

Micros	oft Excel - doc.xls
Filer	M3C ?
	Equipment list Equipement1 Equipement2 Equipement3 Canc

We have only to click on the required Equipment as shown on the figure (steps 1 and 2).

Then the required Equipment appears on the left superior corner of operating environment. We can click on this icon and translate it where we want.

Once the Equipment, Flows, Links and others entities are placed, we just have to click on the button "refresh", and the program draws the lines between the different entities with arrows:

In the above figure, we realize that the Equipment1 is linked to the Equipment2 by the Link1, which supports the Flow1 from the Equipment1 to the Equipment2.

9. CONCLUSIONS :

We have adapted a methodical analysis thought process for the modelling of a complex system like MELISSA process to study its safety working.

This method is presented in upstream from the design system. MELISSA loop modelling with M3C method is realized in order to study the assistance requirements, at the time of the MELISSA loop model definition and construction.

This model building is expressed by a construction methodology of models, supported by computer aids to check and validate the generated models. It is based on the description of the model in text file forms, which make possible a certain rigour for the model description, and an easier output process in a large editor range. It allows to obtain the following results:

- \Rightarrow model approach in three levels
- \Rightarrow simple visualization of model
- \Rightarrow rigour description of model
- \Rightarrow HTML model textual visualization, which allows to surf easier in the different levels of this one (this function does not request any additional installation, it is assured by Internet)
- \Rightarrow A graphical visualization in TCL/TK and EXCEL, which set a discussion base of the model and a graphical sight. This part will be improved in a following version of code (Cf. WP 66.5)

This model allows to calculate the following parameters:

- ⇒ Introduction of cost values and MTTF (Main Time To Failure) for each Equipment, which helps to decide and to select components to be introduced in a physical model
- \Rightarrow Calculus of Flow and introduction of Flows dependencies

10. DEVELOPMENT PROSPECTS

10.1 Standardisation and consolidation of MELISSA loop SDF models:

- Validation by partners
- Structure proposition for technical equipment data base
- Coupling of the technical data base with the models defined previously with M3C
- Upgrading of the models
- Data collection parameters of each equipment

10.2 Select a strategy and a process for safety analysis

- Analyse and discuss propositions of the TN 62.9
- Preliminary Risks Analysis
- Valuation (benchmark) and choice about software tools (go on with M3C and develop new functionalities, choice another software, ...)