RESULTS OF THE STUDIES OF THE ORGANIC WASTE BIOTRANSFORMATION PROCESSES ON SATELLITES "BION-M" №1 AND "PHOTON-M" №4

The problem of utilization of organic waste in confined habitats

• The long terms of interplanetary expeditions and the operation of planetary bases require the creation of the most closed biological life support systems (BLSS).
• Recycling of organic waste is necessary in closed BLSS.
• The disposal of waste beyond the limits, for example the lunar or Martian base, is unacceptable due to the presence of planetary quarantine.
• Warehousing and storage of waste is unsafe in the sanitary-epidemiological aspect.
• Already, a significant proportion of waste accounted for the waste of personal hygiene.
Bioreactor developed by BioTechSis, Ltd. for fermentation in space flight conditions

Analysis of Cellulolytic Activity

Analysis of cellulolytic activity after cultivation of Community No. 5 for 14 days at a temperature of 55 °C and 14 days at a temperature of 25 °C under conditions of orbital flight (Experiment) or on Earth (control, and repeated seeding of the culture), substrate - gauze.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Decomposition of cellulose, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fragmenter with Bion M (experiment)</td>
<td>5,3</td>
</tr>
<tr>
<td>2. Fragmenter with Bion M, having reinoculated after the flight</td>
<td>32,9</td>
</tr>
<tr>
<td>3. Fragmenter control on Earth</td>
<td>29,9</td>
</tr>
<tr>
<td>4. Fragmenter control on Earth, having inoculated</td>
<td>50,3</td>
</tr>
<tr>
<td>5. Fragmenter control in glass</td>
<td>62,2</td>
</tr>
<tr>
<td>6. Fragmenter control in the glass, reinoculated.</td>
<td>28,5</td>
</tr>
</tbody>
</table>

Analysis of the Content of Volatile Fatty Acids

Analysis of the content of volatile fatty acids in samples after cultivation of Community No. 5 for 14 days at a temperature of 55 °C and 14 days at a temperature of 25 °C, under conditions of orbital flight (Experiment) or on Earth (control, and repeated seeding), substrate - gauze fabric.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Acetate</th>
<th>Propionate</th>
<th>Butyrate</th>
<th>Valeriat</th>
<th>Capronate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fragmenter with Bion M (experience)</td>
<td>3.714</td>
<td>0.177</td>
<td>1.334</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2. Fragmenter with Bion M, having reinoculated after the flight</td>
<td>46.716</td>
<td>0.283</td>
<td>17.184</td>
<td>0.102</td>
<td>0.156</td>
</tr>
<tr>
<td>3. Fragmenter control on Earth</td>
<td>31.861</td>
<td>0.882</td>
<td>25.494</td>
<td>0.106</td>
<td>0.030</td>
</tr>
<tr>
<td>4. Fragmenter control on Earth, having inoculated</td>
<td>47.127</td>
<td>1.293</td>
<td>14.233</td>
<td>0.036</td>
<td>-</td>
</tr>
<tr>
<td>5. Fragmenter control in glass</td>
<td>12.959</td>
<td>0.468</td>
<td>5.733</td>
<td>0.019</td>
<td>-</td>
</tr>
<tr>
<td>6. Fragmenter control in the glass, reinoculated.</td>
<td>40.703</td>
<td>0.717</td>
<td>22.265</td>
<td>0.067</td>
<td>0.019</td>
</tr>
</tbody>
</table>
The total molar mass of volatile organic compounds before and after post-treatment using culture Trichoderma viridae in space flight condition

Clostridium thermocellum
Trichoderma viridae

The total concentration of volatile organic compounds before and after post-treatment by Trichoderma viridae culture in space flight conditions

Clostridium thermocellum
Trichoderma viridae

Comparative value of the contamination coefficient of liquid media, formed before and after post-treatment by Trichoderma viridae culture in space flight conditions

Clostridium thermocellum
Trichoderma viridae
Functions of MFC containing activated sludge in the composition of the BLSS

- fermentation of organic substances
- removal of heavy metal ions
- removal of nitrogen oxides formed during the decomposition of proteins
- power generation
Changes in concentration of oxygen and carbon dioxide while long-term function of MFC
Electrical characteristics of MFC in spaceflight (A) and ground control (B)

Horizontal scale – time (days)
Vertical – voltage (mV)
Block diagram of treatment of disposed means of personal hygiene

- **The used means of personal hygiene**
 - Autoclave
 - The culture medium

- **Clostridium thermocellum 55 °C**
 - Biogas
 - Dry residue, 0 – 10%
 - Autolysation

- **Fungi monocultures 37 °C**
 - Fungi biomass
 - H₂O
 - The system of water regeneration from urine

- **Methane engines**
 - CO₂

- **Greenhouses**
The block scheme of utilization of plant wastes

- Fungi monocultures 37°C
 - Fungi biomass
 - Methane engines
 - Biogas
- Association of aerobic Bacteria, 29°C
 - pH=7.0
- Association of anaerobic Bacteria 37°C
 - pH < 7.0
 - Inedible vegetable waste
 - Dry residue, 5 – 20%
 - Autolysis
- CO₂
- Greenhouses
- H₂O
- The system of water regeneration from urine