GREY WATER RECYCLING AND ENERGY RECOVERY

A completely integrated circular economy approach
A proven technology

derived from space research with several terrestrial applications

A technology derived from a research work carried out by FIRMUS France for the European Space Agency (ESA)

The design, implementation and operation monitoring of a process in service since 2005 on the French-Italian Antarctic station Concordia

More than 1,200 users since commissioning without any technical or sanitary incident
Results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C.O.T</td>
<td>mg/L</td>
<td>10</td>
<td>222</td>
<td>3,0</td>
</tr>
<tr>
<td>Chlorure</td>
<td>mg/L</td>
<td>200</td>
<td>65</td>
<td>0,93</td>
</tr>
<tr>
<td>Nitrate</td>
<td>mg/L</td>
<td>25</td>
<td>0,7</td>
<td>0,26</td>
</tr>
<tr>
<td>Phosphate</td>
<td>mg/L</td>
<td>5,0</td>
<td>33</td>
<td>0,20</td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/L</td>
<td>250</td>
<td>25</td>
<td>0,49</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>150</td>
<td>117</td>
<td>5,5</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/L</td>
<td>12</td>
<td>19</td>
<td>2,7</td>
</tr>
<tr>
<td>Ammonium</td>
<td>mg/L</td>
<td>0,5</td>
<td>15</td>
<td>0,7</td>
</tr>
</tbody>
</table>

![Graph showing water quality parameters](chart.png)

How to enhance this expertise?
A global viewpoint

A consortium to provide a customized optimal solution

Technology
Sizing, design and development of the FGWRS® process

FGWRS: Firmus Grey Water Recycling System

Engineering
System integration and design of the energy recovery solution

Optimization
Modeling, simulation and optimization of the circular system

Legislative
Ensure the compliance with legislation and quality monitoring of the produced water

The development of this recycling process requires a system integration by an expert team.
Our vision

- Combat against water stress
- Fight climate change
- Contribute to water and energy autonomy
Our approach

- Need analysis
- Water and energy cycle
- Objectives and constraints
- Parametric study and scenarios

- Regulation
- Architectural constraints
- Grey water quality
- Usage and quality of the recycled water
- Recycling rate
- Occupancy rate (optimist/pessimist)
- Recycling rate
- Usage choice
- Equipment sizing and optimization
Key Features

- Recycle up to 80% of grey waters to obtain hygienic quality water for toilets and the sanitary network.
- Optimize profitability through energy recovery to contribute to the building heating needs.
- Achieve a significant savings potential both in terms of operating costs and use of the resource.
- Allowing reuse for all purposes, except drinking (1% of the daily needs) thanks to the quality of the produced water.
Design phase

- Design and validate the control system
- Design and optimization of the energy management system
- Sizing: FGWRS, storage, heat pump
Exploitation phase

- Simulate the operational scenarios
- Evaluate consumption and profits for several configurations and architectures
- Master and manage a complex, multi-view, circular system
- Improved communication and collaborative work
Thank you FOR YOUR INTEREST