

Memorandum of Understanding 1907105/NL/CP

TECHNICAL NOTE: 83.8 EXPERIMENTAL TESTS PROTOCOL FOR RESEARCH OF THE REACTOR OPTIMAL YIELD

prepared by/ <i>préparé par</i>	J. Brunet, JJ. Leclercq
reference/réference	ESA/ESTEC Contract
issue/édition	1
revision/révision	1
date of issue/date d'édition	August 2006
status/état	Final version
Document type/type de document	Technical Note
Distribution/distribution	MELiSSA all

CONFIDENTIAL DOCUMENT

issue 1 revision 1

APPROVAL

	Experimental tests protocol for research of the	issue 1	revision	0
titre	reactor optimal yield	issue	revision	

author	J. Brunet, JJ. Leclercq	date date	August 2006
auteur		date	2000

approved by	date
approuvé par	date

CHANGE LOG

reason for change /raison du changement	issue/issue	revision/ <i>revision</i>	date/ <i>date</i>
Comments from ESA (Pierre Rebeyre)	1	1	August 2006

CHANGE RECORD

Issue: 1 Revision: 1

reason for change/raison du changement	page(s)/page(s)	paragraph(s)/paragraph(s)
Change of the title to be in accord with the terms of the contract Change of EPAS TN number to be in accord with the TN number emitted by EPAS	bottoms	Introduction
EPAS Explanation of the term 'standard'	1 & 2	Introduction

issue 1 revision 1

Table Of Contents

1.	INTRODUCTION	1
2.	YIELD VERSUS TOTAL SOLID CONCENTRATION	3
3.	YIELD VERSUS 'LIQUID' RESIDENCE TIME	4
4.	CONCLUSION AND PROPOSED PROTOCOL	11
5.	REFERENCE	13
6.	ANNEX 1 : JUSTIFICATION OF THE YIELD VERSUS RESIDENCE TIME	14
6.2	 6.1.1. Dynamic behaviour	14 16 17 17
7.	ANNEX 2 : DOCUMENT EVOLUTION	

1. INTRODUCTION

At the Paris ESA HQ meeting on 22 April 2005, it has been decided to look for optimisation of the 100 litres pilot reactor by acting on the 'liquid' (and 'solid', eventually) residence time. Before applying the tests on the reactor itself, a protocol must be designed on the basis of the LGCB model (dated on 30 July 2004). It is the aim of the study.

In order to fit the simulation of the 100 litres pilot reactor, the previous simulator, described in TN 71.8.1 for the 25 litres prototype reactor, has been modified so that to keep unchanged the residence time. So as the liquid volume is multiplied by 4 (from 25 to 100 litres), the input liquid flow is also multiplied by the same ratio of 4 : the liquid input flow rate is set to 0.315 l/h (instead of 0.07875 l/h).

For practical reasons, this operating point is called 'standard' in the present study. It is emphasized that it is not connected with any nominal operating point of the pilot plant.

Definition of the standard point :

The input flow rate is equal to 0.315 l/h. The drain flow rate is considered here as a degree of freedom and is determined in function of the objectives. The filtrate flow rate is the difference between the input and the drain flow rates so that the liquid volume remains constant at its nominal value of 100 litres.

Table 1 gives the standard input concentrations. The standard load is the product of these concentrations and of the standard input flow rate (Table 2).

Compound	Input concentration (g/l)
Faeces	3.968
Wheat	7.936
Salad	7.936
Potato	7.936
AA	0.091
PA	0.018
BA	0.021
VA	0.006
СА	0.007
NH ₃	0.025

<u>Table 1</u> : Input concentrations of the standard operating point. The concentrations of the dissociated compounds are given for the total form.

TN 83.8	Experimental tests protocol for research of the reactor optimal yield
SHERPA	
This document is	confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization
	Memorandum of Understanding $1907105/\mathrm{NL/CP}$

Compound	Standard load (25 litres prototype)		Standard load (g/h) (100 litres pilot)	
	(g/h)	(g/d)	(g/h)	(g/d)
Faeces	3.1248e-001	7.5	1.25	30
Wheat	6.2496e-001	15	2.5	60
Salad	6.2496e-001	15	2.5	60
Potato	6.2496e-001	15	2.5	60
AA	7.1662e-003	0.172	2.8665e-002	6.8796e-001
PA	1.4175e-003	0.034	5.6700e-003	1.3608e-001
BA	1.6538e-003	0.040	6.6150e-003	1.5876e-001
VA	4.7250e-004	0.0113	1.8900e-003	4.5360e-002
CA	5.5125e-004	0.0132	2.2050e-003	5.2920e-002
NH ₃	1.9688e-003	0.0472	7.8750e-003	1.8900e-001

<u>Table 2</u> : Standard loads of the 100 litres reactor (and of the 25 litres one for the record). The loads of the dissociated compounds are given for the total form.

The corresponding standard residence time is 317 h (13 days) for both reactor (prototype and pilot).

Methodology

The drain flow rate has to be fixed. It will be done by the choice of the 'Total Solid' concentration setpoint.

The first step is to look for the yield in function of the 'Total Solid' concentration at a given residence time. As it will be seen in next section, the yield is ascending versus the 'Total Solid' concentration (the higher concentration, the better yield).

So the study of the yield versus the residence time will be done at maximum 'Total Solid' concentration, which will determine the drain flow rate. In section 2 of TN 71.8.1, dedicated to specifications, the maximum constraint of 'Total Solid' is fixed to 45 DMg/l.

TN 83.8	Experimental tests protocol for research of the reactor optimal yield
SHERPA	
This document is	s confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization
	Memorandum of Understanding $1907105/\mathrm{NL/CP}$

2. YIELD VERSUS TOTAL SOLID CONCENTRATION

In this section the yield has been computed in function of the 'Total Solid' concentration (in the reactor) at steady state for the standard inputs described in section 1.

Definitions :

1. Yield η :

$$\eta = \frac{v}{u} \quad (\text{dimension less}) \tag{1}$$
with v : (g/h) sum of production rates of VFA and CO₂

u : (g/h) load (all the input compounds, except water, going into the reactor).

2. 'Total Solid' concentration :

It is the sum of concentrations of all the solid compounds (Faeces, Wheat, Potato, Salad, OMProt, OMLip, OMCarb, OMFibre, BioSugar, BioSugar2, BioAA, BioLCFA, BioDead, SolidInert).

Figure 1 shows the evolution of the yield in function of the 'Total Solid' concentration in the reactor.

Figure 1 : Yield (dimension less) in function of 'Total Solid' concentration in the reactor.

The result of figure 1 is considered general : the yield is ascending versus the 'Total Solid' concentration in the reactor. So for the next step of the study the 'Total Solid' concentration setpoint is set to its maximum constraint : 45 DM g/l.

TN 83.8	Experimental tests protocol for research of the reactor optimal yield
SHERPA	
This document i	s confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization
	Memorandum of Understanding $1907105/\mathrm{NL/CP}$

3. **YIELD VERSUS 'LIQUID' RESIDENCE TIME**

In this section :

- The liquid residence time is variable by moving the input liquid flow rate. The input concentrations vary in the inverse way so that the load remains at its standard value defined in table 2 for the 100 litres reactor.
- the drain flow rate is computed so that the 'Total Solid' concentration is equal to its • maximum constraint : 45 DM g/l.

The evolution of the yield is given in figure 2. It is plotted under different forms for a better description. The upper graph shows that the yield of the reactor as defined in relation (1) is decreasing versus the liquid residence time. In the two graphs below, the yield is decomposed into its 2 main components :

- the yield of CO₂ total in gas and liquid flow rates;
- the yield of VFA that are present in the liquid only.

The yield of CO₂ total in gas and liquid is decreasing for short liquid residence time and then reach an asymptote independent of the liquid residence time while the yield of VFA is continuously decreasing. On the bottom graph of figure 2 it can be extrapolated that the yield of VFA reaches 0 for a residence time of 46 days. In that point the input flow rate is equal to the drain flow rate and all the VFA are lost in the drain. An attempt of explanation is given in relations (A1.22) and (A1.23) for CO₂ and in (A1.15) for VFA.

The two lower graphs of the next figure 3, shows another decomposition of the reactor yield :

- the yield in the gas flow that contains CO₂ only; •
- the yield in the liquid flow that contains VFA and CO₂. •

These two components have inverse behaviour : when the yield in the gas flow is increasing, the other one is decreasing. An attempt of explanation is given in relations (A1.25) and (A1.26) for CO₂.

TN 83.8	Experimental tests protocol for research of the reactor optimal yield
SHERPA	
This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization	
Memorandum of Understanding 1907105/NL/CP	

issue 1 revision 1 -

page 5

Figure 2: Yield (dimension less) in function of liquid residence time.The standard point is marked with a red star (at residence time = 13 days).The reactor yield (upper graph) is decomposed into its two complementary components :the CO_2 Gas and Liquid component yieldthe VFA (Liquid only) component yield

This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization	TN 83.8	Experimental tests protocol for research of the reactor optimal yield
	SHERPA	
Memorandum of Understanding 1907105/NL/CP	This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization	
Memorandum of Understanding 1907105/NL/CP		

issue 1 revision 1 -

page 6

<u>Figure 3</u> : Yield (dimension less) in function of liquid residence time. The standard point is marked with a red star (at residence time = 13 days). The reactor yield (upper graph) is decomposed into two components : the Gas (CO_2 only) yield the Liquid (VFA and CO_2) yield

TN 83.8	Experimental tests protocol for research of the reactor optimal yield
SHERPA	
This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization	
Memorandum of Understanding 1907105/NL/CP	

The evolutions of the VFA, CO_2 and NH_3 concentrations versus residence time are plotted in the figures 4 and 5. It can be checked that all the concentrations are increasing with the residence time, except for the CO_2 liquid that reaches a saturation limit (graph 3 of figure 5). That can be justified by the relation (A1.18) and (A1.19) of annex 1.

<u>Figure 4</u> : Concentrations of VFA (AA, PA and BA) in function of liquid residence time. The standard point is marked with a red star (at residence time = 13 days).

TN 83.8	Experimental tests protocol for research of the reactor optimal yield
SHERPA	
This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization	
Memorandum of Understanding 1907105/NL/CP	

issue 1 revision 1 -

page 8

Figure 5 : Concentrations of VFA (VA and CA) CO_2 and NH_3 in function of liquid residence time.

The standard point is marked with a red star (at residence time = 13 days). In graph 3, the label 'CO₂ total' means CO₂ total form (ionic and molecular) in *liquid*.

TN 83.8	Experimental tests protocol for research of the reactor optimal yield
SHERPA	
This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization	
Memorandum of Understanding 1907105/NL/CP	

As a subsidiary result, it appears that the drain flow rate at steady state is independent of the residence time (figure 6). An attempt of justification is also given in relation (A1.10) of annex 1. So, as the 'Total Solid' concentration is maintained at its maximum constraint (45 DM g/l), the 'Total Solid' production is independent of the residence time and cannot be optimised.

Figure 6 : Steady state drain flow rate in function of 'liquid' residence time.

Figure 7 allows to check that the 'Total Solid' constraint (45 DM g/l) is respected.

TN 83.8	Experimental tests protocol for research of the reactor optimal yield
SHERPA	
This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization	
Memorandum of Understanding 1907105/NL/CP	

issue 1 revision 1 -

<u>Figure 7</u> : Steady state 'Total Solid' in function of 'liquid' residence time.

TN 83.8	Experimental tests protocol for research of the reactor optimal yield
SHERPA	
This document is	s confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization
Memorandum of Understanding 1907105/NL/CP	

4. CONCLUSION AND PROPOSED PROTOCOL

The present study shows that :

- the yield of the modelled reactor is decreasing versus ascending residence time;
- the component of the yield related to the total CO_2 in gas and liquid is quickly decreasing and then reaches an asymptote independent of the residence time;
- the component of the yield related to the VFA is continuously decreasing versus ascending residence time. It tends to 0 when the residence time tends to 46 days; in that point, the input liquid flow rate is equal to the drain flow rate and all the VFA are lost in the drain.
- the component of the yield related to the gas production (CO₂ only) is increasing versus ascending residence time and reaches an asymptote for high residence time (about 46 days);
- the component of the yield related to the liquid production (VFA and CO₂) is decreasing versus ascending residence time.

Surprisingly that behaviour can be justified by means of two very simple examples based on the dissolution of a solid into a solvated compound with or without degassing. These examples are studied analytically in annex 1. Further investigations could be done by making more complex these two examples by introducing several solids and several products so that to go towards the complexity of the model. It is expected to express the concentrations of the products, and consequently the yield, at steady state.

When doing the tests proposed hereafter, it should be interesting to check if the pilot yield behaves as foreseen by the model. Then correlations between analytical results and measurements on the reactor could lead to estimate kinetics constants.

Protocol of test to search optimum yield :

The test should cover a large range of residence time to show clearly the evolution of the yield despite the noise measurement.

So it is proposed to realise three tests at the following residence times : 3, 7 and 13 days. During these tests, attention will be focused on the concentrations of CO_2 , VFA and NH₃ in the filtrate and on the production of CO_2 gas. Each test should be long enough (about 4 or 5 residence times) to observe the steady state where the liquid concentrations become constant versus time. The yield and its different components will be measured at steady state. Of course the tests will be done with the same load (the one chosen for the MELISSA project) and the 'Total Solid' concentration is supposed maintained at its maximum constraint (45 DM g/l).

According to the present study, the shorter time constant the better yield. The inconvenience is a high dilution of VFA in the filtrate flow, for the shortest residence times (figures 4 and 5). If it is confirmed by the tests, the optimum functioning of the reactor will be a compromise between the yield and the minimum concentrations of VFA acceptable by the Rhodobacter compartment.

TN 83.8	Experimental tests protocol for research of the reactor optimal yield	
SHERPA		
This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization		
Memorandum of Understanding 1907105/NL/CP		

issue 1 revision 1 -

TN 83.8	Experimental tests protocol for research of the reactor optimal yield	
SHERPA		
This document i	This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization	
	Memorandum of Understanding 1907105/NL/CP	

Another way to choose the optimum could be the repartition between the gas production and the liquid production. For example, if the CO₂ gas production is more useful for the MELISSA loop than the VFA production, then it could be decided to choose high residence time to obtain high CO₂ gas production and, consequently, poor VFA production.

issue 1 revision 1 -

page 13

5. **REFERENCE**

POUGHON L., "Anareobic Waste Compartment modelling and simulation toolbox 'AWC_MS'". ESTEC contract, Memorandum of Understanding TOS-MCT/2002/3161/In/CL Dated January 2002, February 2003, TN 74.1.

POUGHON L., "Anareobic Waste Compartment modelling and simulation toolbox 'AWC_MS' – AWC toolbox improvement". ESTEC contract, Memorandum of Understanding TOS-MCT/2002/3161/In/CL Dated January 2002, August 2003, TN 74.2.

BRUNET J., LECLERCQ J.J., "Simplified Model". EPAS Contract dated April 2004, Memorandum of Understanding TOS-MCT/2002/3161/In/CL Dated January 2002, April 2005, TN 1.

BRUNET J., LECLERCQ J.J., "Technical specifications of the Control Command System". EPAS Contract dated April 2004, Memorandum of Understanding TOS-MCT/2002/3161/In/CL Dated January 2002, April 2005, TN 2.

TN 83.8	
CHEDDA	

Experimental tests protocol for research of the reactor optimal yield

This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization Memorandum of Understanding 1907105/NL/CP

6. ANNEX 1 : JUSTIFICATION OF THE YIELD VERSUS RESIDENCE TIME

The behaviour of the yield versus residence time observed on the modelled liquefying compartment can be justified by means of the two following simple processes that must be considered as academic examples.

The first example can be seen as the dissolution of a solid into water with a non null rate constant and a first order kinetics. It is assumed to be a very simple representation of the production of VFA from wastes.

In the second example, a degassing is associated to the dissolution. Then it is assumed to represent the production of CO_2 gas.

6.1. First process : dissolution without degassing

6.1.1. DYNAMIC BEHAVIOUR

The input substrate A (concentration ' a_i ' and flow rate ' q_i ') is supposed to be a solid that is degraded into a soluble product inside a CST (Continuous Stirred Tank) reactor fitted with a filtration unit (figure A1.1).

Figure A1.1: Scheme of a simple degradation process q_i : input flow rate q_d : drain flow rate a : concentration of A in the drain flow b : concentration of product B in the filtrate flow and drain flow Volume: V=constant

The chemical reaction is supposed to be described by the stoechiometry: $\alpha A \rightarrow \beta B$ with $\alpha = \beta = 1$

The process behaviour is described by the following equations:

TN 83.8	Experimental tests protocol for research of the reactor optimal yield
SHERPA	
This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization	
Memorandum of Understanding 1907105/NL/CP	

issue 1 revision 1 -

page 15

• Dilution of A and B :

$$V \cdot \frac{da}{dt} = q_i \cdot a_i - q_d \cdot a + V \cdot r_A$$
(A1.1)

$$V \cdot \frac{db}{dt} = -q_i \cdot b + V \cdot r_B \tag{A1.2}$$

• Kinetics (the reaction is supposed of first order): $\frac{d[A]}{dt} = -\mu \cdot [A] \quad \Leftrightarrow \quad r_A = -\mu \cdot a \qquad (A1.3)$

• Stoechiometry:

$$-\frac{1}{\alpha} \cdot \frac{d[A]}{dt} = \frac{1}{\beta} \cdot \frac{d[B]}{dt} \iff -\frac{1}{\alpha} \cdot r_{A} = \frac{1}{\beta} \cdot r_{B}$$
(A1.4)

with r_A : degradation rate of A.

 μ : rate constant

Expression of the solid compound concentration dynamic behaviour : Combining (A1.1) and (A1.3) leads to:

$$\dot{a} = -\frac{1}{\tau_1}a + \frac{G_1}{\tau_1} \cdot a_i \quad \Leftrightarrow \quad \frac{a}{a_i} = \frac{G_1}{1 + \tau_1 \cdot p} \quad \text{(in Laplace notation)}$$
with
$$G_1 = \frac{q_i}{q_d + V \cdot \mu}$$

$$\tau_1 = \frac{V}{q_d + V \cdot \mu}$$
(A1.5)

Expression of the solvated compound concentration dynamic behaviour : Combining (A1.2) and (A1.3) leads to:

 $\dot{\mathbf{b}} = -\frac{\mathbf{q}_i}{\mathbf{V}} \cdot \mathbf{b} + \frac{\beta}{\alpha} \cdot \boldsymbol{\mu} \cdot \mathbf{a}$ (A1.6)

TN 83.8	Experimental tests protocol for research of the reactor optimal yield	
SHERPA		
This document is	This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization	
	Memorandum of Understanding $1907105/\mathrm{NL/CP}$	

issue 1 revision 1 -

Combining (A1.2), (A1.3) and (A1.5) leads to:

$\frac{\mathbf{b}}{\mathbf{a}_{i}} = \frac{\mathbf{G}_{2}}{\left(1 + \boldsymbol{\tau}_{1} \cdot \mathbf{p}\right) \cdot \left(1 + \boldsymbol{\tau}_{2} \cdot \mathbf{p}\right)}$	(in Laplace notation)	
with $G_2 = \frac{\beta}{\alpha} \cdot \frac{V \cdot \mu}{q_d + V \cdot \mu}$		(A1.7)
$\tau_2 = \frac{V}{q_i}$		

٦

6.1.2. STEADY STATE BEHAVIOUR

Given the load L :

 $\mathbf{L} = \mathbf{q}_i \cdot \mathbf{a}_i \tag{A1.8}$

It is recalled that the load is constant when q_i varies. The product of q_i and a_i is unchanged.

At steady state (the derivatives are null), the expression of the solid concentration in (A1.5) becomes :

$$\mathbf{a} = \mathbf{G}_1 \cdot \mathbf{a}_i \tag{A1.9}$$

The drain flow rate ' q_d ' is such that 'a' is equal to its constraint a_M . So (A1.1) becomes :

$$q_{d} = \frac{L - V \cdot \mu \cdot a_{M}}{a_{M}} \qquad \Leftrightarrow \qquad q_{d} + V \cdot \mu = \frac{L}{a_{M}}$$
(A1.10)

Given the residence time :

$$\tau = \frac{V}{q_i} \tag{A1.11}$$

As q_d must be between 0 and q_i , the following inequalities are deduced :

$$A \le 1 \quad \text{with} \quad A = \frac{V \cdot \mu \cdot a_{M}}{L}$$

$$\tau \le \tau_{M} \quad \text{with} \quad \tau_{M} = \frac{V}{L} \cdot \frac{a_{M}}{1 - A}$$
(A1.12)

The expression of the liquid compound 'b' at steady state is deduced from (A1.7), taking into account that $\alpha = \beta = 1$,

$$b = \frac{V \cdot \mu}{q_d + V \cdot \mu} \cdot a_i = \mu \cdot a_M \cdot \tau$$
(A1.13)

TN 83.8	Experimental tests protocol for research of the reactor optimal yield	
SHERPA		
This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization		
Memorandum of Understanding 1907105/NL/CP		

So at this point of the example, two observations can be done :

- (A1.10) \Rightarrow qd is independent of τ . It is quite similar to the evolution of the drain flow rate versus the residence time in the figure 6 of section 3.
- (A1.13) \Rightarrow b is a linear ascending function of τ . It is quite similar to the evolution of the VFA concentrations versus the residence time in the figures 4 and 5 of section 3.

Computation of the yield

By definition the yield η is :

$$\eta = \frac{b \cdot (q_i - q_d)}{L} \tag{A1.14}$$

Its expression versus τ is :

$$\eta = \mathbf{A} \cdot \left(1 - \frac{\mathbf{L} \cdot (1 - \mathbf{A})}{\mathbf{V} \cdot \mathbf{a}_{\mathrm{M}}} \cdot \tau \right) \quad (\text{A given in (A1.11)}) \tag{A1.15}$$

So the yield is decreasing versus τ with the negative slope :

$$\frac{d\eta}{d\tau} = -A \cdot \frac{L \cdot (1 - A)}{V \cdot a_{M}} \qquad \Leftrightarrow \qquad \frac{d\eta}{d\tau} = -\mu \cdot (1 - A) \tag{A1.16}$$

The yield tends to its maximum $A = \frac{V \cdot \mu \cdot a_M}{T}$:

- when τ tends to 0;
- or/and when A tends to 1 (when A=1, it is independent of τ) : i.e. for increasing values of V, μ and a_M , and decreasing values of L.

When $A \neq 1$, the yield tends to 0 when τ tends to τ_M (defined in (A1.12)).

The behaviour of the yield in (A1.15) is very similar to the reactor yield observed in figure 2 of section 3.

From (A1.13), the concentration 'b' of the liquid compound 'B' increases with ascending residence time. So, as q_d is constant (from (A1.10)), the loss of B in the drain increases. It is another way to explain why the yield regarding B is decreasing.

In the following example, the compound B is assumed to have a gaseous form. Then its yield will be completely different.

6.2. Second process : dissolution with degassing

6.2.1. DYNAMIC BEHAVIOUR

In addition to the previous example, the compound B here is supposed to be in equilibrium with its gaseous phase. Then the expression of 'b' from (A1.2) becomes :

TN 83.8	Experimental tests protocol for research of the reactor optimal yield		
SHERPA			
This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization			
Memorandum of Understanding 1907105/NL/CP			

issue 1 revision 1 -

$$V \cdot \frac{db}{dt} = -q_i \cdot b + V \cdot \phi + V \cdot r_B$$

$$\phi = K \cdot (c - b) \quad \text{with } K = K_{La}$$

$$c = \frac{n_0}{k_p} \cdot \frac{n}{n + n_{N2}} \cdot M$$

$$c = 55.55 \text{ mol/l.}$$

(A1.17)

with n0 = 55.55 mol/l, kp : partition coefficient of compound B,

M : molar mass of compound B.

 ϕ : positive in the direction from gas to liquid

n : number of mole of B in the gas phase.

 n_{N2} : number of mole of nitrogen (inert gas) in the gas phase.

Remark : the expression of 'c' above tend to its asymptote when the n increases while $n_{\rm N2}$ is constant with the time :

$$\mathbf{c}_{\mathrm{A}} = \frac{\mathbf{n}_{\mathrm{o}}}{\mathbf{k}_{\mathrm{p}}} \cdot \mathbf{M} \tag{A1.17 bis}$$

6.2.2. STEADY STATE BEHAVIOUR

At steady state (the derivative is null) and the expression of 'b' from (A1.17) becomes :

$$b = \frac{\mu \cdot a_{M} + K \cdot c}{K + \frac{1}{\tau}}$$
(A1.18)

So when τ tends to 0, b tends to 0,

and when τ tends to τ_{M} (equivalent to ∞), b tends to its asymptotic value :

$$\mathbf{b}_{\mathrm{A}} = \frac{\boldsymbol{\mu} \cdot \mathbf{a}_{\mathrm{M}} + \mathbf{K} \cdot \mathbf{c}}{\mathbf{K}} \tag{A1.19}$$

This behaviour is very similar to the one observed for liquid CO_2 (total form) concentration in graph 3 of figure 5, section3.

Computation of the yield

In the case of a compound B present in gas and liquid phases, the definition of the yield η is :

$$\eta = \frac{-\phi \cdot \mathbf{V} + b \cdot (\mathbf{q}_i - \mathbf{q}_d)}{\mathbf{L}}$$
(A1.20)

Its expression versus τ is :

TN 83.8			
SHERPA			
This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization			
Memorandum of Understanding 1907105/NL/CP			

issue 1 revision 1 -

page 19

$$\eta = \frac{1}{L} \cdot \left(V \cdot \mu \cdot a_{M} - q_{d} \cdot \frac{\mu \cdot a_{M} + K \cdot c}{K + \frac{1}{\tau}} \right)$$
(A1.21)

So when τ tends to 0, the yield tends to its maximum :

$$\eta_{\rm M} = \frac{\mathbf{V} \cdot \boldsymbol{\mu} \cdot \boldsymbol{a}_{\rm M}}{\mathbf{L}} \le 1 \tag{A1.22}$$

and when τ tends to τ_{M} (equivalent to $\infty),$ the yield tends to its asymptote :

$$\eta_{A} = \frac{1}{L} \cdot \left(V \cdot \mu \cdot a_{M} - q_{d} \cdot \frac{\mu \cdot a_{M} + K \cdot c}{K} \right)$$
(A1.23)

It is similar to the behaviour of CO_2 (Gas + Liquid) yield in figure 2 of section 3.

Gas component of the yield :

Considering the gas component of the yield :

$$\eta_{\rm G} = \frac{-\phi \cdot V}{L} \tag{A1.24}$$

its expression is :

$$\eta_{G} = \frac{K \cdot V}{L} \cdot \left(\frac{\mu \cdot a_{M} + K \cdot c}{K + \frac{1}{\tau}} - c \right)$$
(A1.25)

When τ tends to 0, 'c' tends to 0 because all the gas remains in the liquid phase; so η_G tends to 0;

and when τ tends to τ_M (equivalent to ∞), the component η_G of the yield tends to its asymptote :

$$\eta_{G} = \frac{K \cdot V}{L} \cdot \left(\frac{\mu \cdot a_{M} + K \cdot c_{A}}{K} - c_{A}\right)$$
(A1.26)

It is similar to the behaviour of Gas (CO₂) yield in figure 3 of section 3.

Liquid component of the yield :

In this example where the compound B can be in a gaseous form, its concentration 'b' in the liquid phase reaches a maximum asymptotical value (from (A1.19)). So its loss in the drain is limited, contrarily to what happens when B has no gaseous form (case of the previous example).

TN 83.8	Experimental tests protocol for research of the reactor optimal yield	
SHERPA	1 1 7	
This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization		
Memorandum of Understanding 1907105/NL/CP		

issue 1 revision 1 -

page 20

NOTATIONS

- CODs Soluble Chemical Oxygen Demand
- CODt Total Chemical Oxygen Demand
- DM Dry Matter
- N org Organic Nitrogen
- N tot Total Nitrogen
- Organic Matter OM
- VFA Volatile Fatty Acids
- AA Acetic Acid (CH₃COOH)
- Butyric Acid (C₃H₇COOH) BA
- CA Caproic Acid (C₅H₁₁COOH)
- Propionic Acid (C₂H₅COOH) PA
- VA Valeric Acid (C₄H₉COOH)
- NH₃ Ammonia (gaseous or solvated)
- CST Continous Stirred Tank
- ODE Ordinary Differential Equation
- MV Manipulated Variable
- Setpoint Sp

CCS Control Command System

TN 83.8	Experimental tests protocol for research of the reactor optimal yield	
SHERPA		
This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization		

Memorandum of Understanding 1907105/NL/CP

7. ANNEX 2 : DOCUMENT EVOLUTION

	ESA Comment	Sherpa answers
Cover page	Could you please change the title of the TN so that it reflect the WP name? In this case, it should be "Support to testing of the system model of CI"	According to the corresponding WP title of Sherpa proposal, the title should be "Experimental tests protocol for research of the reactor optimal yield"
	Could you please change the number of the SHERPA TNs you refer to? (i.e. "SHERPA's TN 1, page 1, TN2 page 2) These SHERPA TNs have been combined by EPAS in TN 71.8.1	Done accordingly
Introduction, page 1 and 2	Could you please clarify the way the input flow rates are calculated? Nominally, the hydraulic residence time in the waste compartment is 10 days, which implies that for the 100L reactor, 10 L influent are fed every day. Flow rates may be higher. Could you please check if there is an impact on the results depicted in the TN?	The term 'standard residence time' refers to a given operating point in the present TN. This point is defined in introduction. It is not connected with the nominal operating point of the pilot plant.

TN 83.8	
SHERPA	ł

Experimental tests protocol for research of the reactor optimal yield

This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization Memorandum of Understanding 1907105/NL/CP